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Abstract

We develop an efficient algorithm, coordinate
descent FCI (CDFCI), for the electronic struc-
ture ground state calculation in the configura-
tion interaction framework. CDFCI solves an
unconstrained non-convex optimization prob-
lem, which is a reformulation of the full config-
uration interaction eigenvalue problem, via an
adaptive coordinate descent method with a de-
terministic compression strategy. CDFCI cap-
tures and updates appreciative determinants
with different frequencies proportional to their
importance. We show that CDFCI produces
accurate variational energy for both static and
dynamic correlation by benchmarking the bind-
ing curve of nitrogen dimer in the cc-pVDZ ba-
sis with 10−3 mHa accuracy. We also demon-
strate the efficiency and accuracy of CDFCI
for strongly correlated chromium dimer in the
Ahlrichs VDZ basis and produces state-of-the-
art variational energy.

1 Introduction

Solving quantum many-body problem for elec-
trons is a well-known challenging task. While
weakly correlated (single-reference) systems
can be well approximated using density func-
tional theory and coupled cluster methods
such as CCSD(T); strongly corrected (multi-
reference) systems remain challenging. The
difficulty comes in two aspects: the infamous
fermion sign problem and combinatorial scaling

of the problem size. In this paper, we propose
an efficient algorithm, named coordinate de-
scent FCI (CDFCI), to calculate the ground
state energy and its corresponding variational
wavefunction for both weakly and strongly cor-
related fermion systems in the framework of
full configuration interaction.

Besides the direct diagonalization of the
full configuration interaction (FCI) Hamilto-
nian,1 many other algorithms have been pro-
posed, which can be roughly organized into
three groups. The first group, density ma-
trix renormalization group (DMRG),2–4 adopts
tensor train ansatz in representing the vari-
ational wavefunction. DMRG has been rou-
tinely applied to study the ground and ex-
cited state of strongly correlated π-conjugated
molecules and one-dimensional systems.4 The
second group, like full configuration interac-
tion quantum Monte Carlo (FCIQMC),5–7 as-
sumes that the ground state variational wave-
function can be represented as the empirical
distribution of a large number of stochastic
walkers. To reduce the variance of the energy
estimator and the required number of walk-
ers, initiator-FCIQMC (iFCIQMC)8 and semi-
stochastic FCIQMC (S-FCIQMC)9 are devel-
oped aiming at a good trade-off between vari-
ance and bias. The third group first solves a se-
lected configuration interaction (SCI) problem
and then conducts a perturbation calculation.
This family of algorithms (SCI+PT), includes
the early work on configuration interaction
by perturbatively selecting iteration (CIPSI),10
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and more recently, adaptive configuration in-
teraction (ACI),11 adaptive sampling configura-
tion interaction (ASCI),12 etc. Heat-bath con-
figuration interaction (HCI)13 significantly re-
duces the computational cost of the selected
CI phase based on the information from mag-
nitudes of the double excitations. With per-
turbation, HCI is able to calculate the ground
state energy of a strongly correlated all elec-
tron chromium dimer up to 1 mHa accuracy
in Ahlrichs VDZ basis. More recently, semi-
stochastic HCI (SHCI)14 further accelerates the
perturbation phase with a stochastic idea sim-
ilar to FCIQMC.
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Figure 1: Correlation between the updating fre-
quencies and magnitudes of the ground state
wavefunction of an all-electron C2 with cc-
pVDZ basis calculated by CDFCI. Coefficients
of configuration interaction wavefunction are
sorted in a decreasing order based on their mag-
nitudes. Smaller panel shows the results of the
largest 200 coefficients.

The algorithm we considered in this paper
belongs to the third group (SCI+PT) above.
Our goal is to improve the variational stage
of the computation i.e., the selective CI part.
Our proposed algorithm, CDFCI, is an adap-
tive coordinate-wise (i.e., determinant-wise) it-
erative method. It updates the coefficient of an
appreciative determinant each iteration and has
the nice feature of visiting determinants with
different frequencies proportional to their im-
portance. As not all determinants contribute
equally to the ground state wavefunction, CD-
FCI is able to efficiently capture the important

part of the FCI space and obtain a good approx-
imation to the ground state. Figure 1 indicates
the relation between the updating frequency
of determinants and magnitudes of the deter-
minant coefficients of the ground state wave-
function for an all-electron C2 calculation with
cc-pVDZ basis by CDFCI. As shown in Fig-
ure 1, many coefficients are only updated once
throughout iterations, which shows the effi-
ciency of the updating strategy in CDFCI. Dur-
ing iterations, CDFCI also compresses those un-
appreciative determinants through hard thresh-
olding. Our implementation philosophy of CD-
FCI is to reserve memory resource for stor-
ing variational wavefunction as much as pos-
sible, hence, the Hamiltonian matrix is eval-
uated on-the-fly. Eventually, CDFCI is able
to capture the binding curve of all-electron N2

with cc-pVDZ basis up to 6 digits accuracy in
one week and compute the ground state energy
of all-electron Cr2 with Ahlrichs VDZ basis to
−2086.443565 Ha, which is the state-of-the-art
variational result.

The rest of the paper is organized as follows.
Section 2 presents the CDFCI algorithm. The
implementation detail is stated in Section 3. In
Section 4, we demonstrate the efficiency and
accuracy of CDFCI via applying it to various
molecules including H2O, C2, N2, and Cr2. Also
the binding curve of N2 is characterized. Fi-
nally, in Section 5, we conclude the paper to-
gether with discussion on future work.

2 Coordinate descent FCI

This section first reformulates the FCI eigen-
value problem as a non-convex optimization
problem15,16 with no spurious local minima and
then describes in detail the coordinate descent
FCI algorithm together with the compression
technique and suggested stopping criteria.

Given a complete set of spin-orbitals {χp},
a many-body Hamiltonian operator, under the
second quantization, can be written as

Ĥ =
∑

p,q

tpqâ
†
pâq +

1

2

∑

p,r,q,s

vprqsâ
†
pâ

†
râqâs, (1)
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where â†p and âp denote the creation and annihi-
lation operator of an electron with spin-orbital
index p, tpq and vprqs are one- and two-electron
integrals respectively. The ground state energy
of Ĥ can be obtained from solving the time-
independent Schrödinger equation

Ĥ |Φ0〉 = E0 |Φ0〉 , (2)

where E0 denotes the ground state energy (the
smallest eigenvalue) and |Φ0〉 denotes the corre-
sponding ground state wavefunction. Without
loss of generality, we assume that E0 is negative
and non-degenerate, i.e., the eigenvalues of Ĥ
are given as E0 < E1 ≤ E2 ≤ · · · .

In FCI, the complete spin-orbital set is trun-
cated to a finite subset {χp}norb

p=1 , obtained e.g.,
by Hartree-Fock or Kohn-Sham calculations.
The FCI variational space V is spanned by all
possible Slater determinants constructed from
{χp}norb

p=1 , and the dimension of V is denoted as
NFCI also known as the total number of config-
uration interactions. The ground state wave-
function is then discretized in V, i.e., |Φ0〉 ∈
V = span

{
|D1〉 , . . . , |DNFCI

〉
}
, where |D1〉 de-

notes the reference determinant, |Di〉 for 1 <

i ≤ NFCI denotes other Slater determinants
constructed from the finite set of spin-orbitals.
Correspondingly, the Hamiltonian operator is
represented by a many-body Hamiltonian ma-
trix H with its (i, j) entry as Hi,j = 〈Di| Ĥ |Dj〉.
Let b and c denote coefficient vectors with entry
bi and ci respectively. The ground state wave-
function can be written as |Φ0〉 =

∑
i ci |Di〉.

The time-independent Schrödinger equation (2)
has its matrix representation as,

Hc = E0c, (3)

which is known as the FCI eigenvalue problem.
The second-quantized Hamiltonian operator as
in (1) implies that Hi,j is nonzero if and only
if |Di〉 can be obtained from |Dj〉 via chang-
ing at most two occupied spin-orbitals. Hence,
we say that |Di〉 is H-connected with |Dj〉 if
Hi,j is nonzero. The set of all indices i such
that |Di〉 is H-connected with |Dj〉 is called the
H-connected index set of j and is denoted as
IH(j). Since the cardinality of IH(j) is much

smaller than NFCI, the matrix H is extremely
sparse.

2.1 Reformulation of the FCI

eigenvalue problem

The FCI eigenvalue problem (3) can be refor-
mulated as the following unconstrained non-
convex optimization problem,

min
c∈RNFCI

f(c) =
∥∥H + cc

⊤
∥∥2

F
, (4)

where ‖·‖F denotes the Frobenius norm of a ma-
trix. The gradient of the objective function is

∇f(c) = 4Hc+ 4
(
c
⊤
c
)
c.

As analyzed in our previous work,16 the sta-
tionary points are 0 and ±

√
−Eivi for Ei < 0,

where vi is the normalized eigenvector cor-
responding to Ei. Furthermore, importantly,
±
√
−E0v0 are the only two local minimizers

with the same objective value, while other sta-
tionary points are saddle points. Thus, solving
the optimization problem (4) reveals the ground
state energy E0 and the ground state wavefunc-
tion coefficient vector v0. For such an optimiza-
tion problem, higher order methods converge
to global minima efficiently but their per itera-
tion computational costs are too expensive for
FCI problems. Hence, only first order methods,
like gradient descent methods (GDs), stochastic
gradient descent methods (SGDs), and coordi-
nate descent methods (CDMs), are discussed
here.

The first order optimization methods applied
to (4), compared with solving (3) using tradi-
tional methods, e.g., power method, Davidson
method, and Lanczos method, have two main
advantages. First, GDs, SGDs, and CDMs
do not need any tuning parameters: no diag-
onal shift is needed to turn the smallest eigen-
value into the largest one in magnitude16 and
the stepsize can be addressed by an exact line
search. Second, since no orthonormality con-
straint appears explicitly in (4), solving (4)
with GDs, SGDs, and CDMs does not need
any orthonormalization step. While in tradi-
tional methods like Davidson or Lanczos meth-
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ods, orthonormalization step is needed every a
few iterations to avoid numerical instability is-
sue, which would be expensive for FCI prob-
lems.

Among the first order optimization methods,
CDMs are more suitable for FCI problems.
GDs evaluate and update the exact gradient
each iteration, which is prohibitively expensive
for FCI problems, due to the huge problem di-
mension. SGDs evaluate and update a stochas-
tic approximation of the full gradient, which is
of much cheaper computational cost per itera-
tion. SGDs actually have been applied to FCI
problems in an implicit way: as FCIQMC, iF-
CIQMC, and S-FCIQMC can all be regarded as
SGDs applied to a similar objective function as
(4) with constant stepsizes.7 SGDs, in general,
converge efficiently to a neighborhood of mini-
mizers and then wander around the minimizer
due to the stochastic approximation. CDMs
select and update a single coefficient each it-
eration, which is of cheap computational cost.
Comparing to GDs, CDMs provably achieve
faster convergence rate in terms of the prefac-
tor,16 whereas comparing to SGDs, CDMs are
approximately of equal cost per iteration, but
is much more stable towards convergence. Fur-
ther, with a properly designed selecting strat-
egy, CDMs updates different coefficients with
different frequencies, taking advantage of the
different importance of determinants in FCI
problems. Taking these advantages into consid-
eration, we design CDFCI, which is a CDM tai-
lored for FCI problems with compression strat-
egy, to efficiently solve (4). This method is de-
scribed in details below.

2.2 Algorithm

The CDFCI algorithm stores two sparse vec-
tors c

(ℓ) and b
(ℓ) in the main memory that are

contiguously maintained throughout iterations:
c
(ℓ) denotes the computed coefficient vector of

the ground state wavefunction in the ℓ-th itera-
tion and b

(ℓ) is a compressed approximation of
Hc

(ℓ).
Let us first give a sketch of the CDFCI algo-

rithm: In the ℓ-th iteration, CDFCI first finds
the i(ℓ+1)-th determinant with potentially steep-

est objective function value decrease among all
H-connected determinants of |Di(ℓ)〉. Then CD-
FCI conducts an exact line search to find the
optimal update α such that f(c(ℓ) + αei(ℓ+1))
is minimized and hence the estimator for the
ground state energy is reduced, where ei(ℓ+1)

denotes the indicator vector of i(ℓ+1). b
(ℓ)

plays an important role in all above steps.
In preparation for next iteration, the vector
b
(ℓ+1) needs to be updated incorporating with

c
(ℓ+1) = c

(ℓ) + αei(ℓ+1) . However, an exact up-
date b

(ℓ+1) = b
(ℓ) + αH:,i(ℓ+1) could waste lim-

ited memory resource on unappreciative deter-
minants. Our compression step updates coeffi-
cients only when they do not cost extra mem-
ory resource or if they are significantly large
in magnitudes. Although the compression step
introduces error along the iterations, as we will
show, we can still calculate the Rayleigh quo-
tient corresponding to c

(ℓ+1) exactly, which is
used as the ground state energy estimator in
CDFCI.

In the following, we will discuss each part of
CDFCI in detail and then conclude this section
with a pseudo-code for the algorithm.

2.2.1 Determinant-select and coefficient-

update

Determinant-select is the first step in each it-
eration. Assume that the ℓ-th iteration up-
dates determinant |Di(ℓ)〉 and results a coeffi-
cient vector c

(ℓ). We select the determinant to
be updated at the current iteration, |Di(ℓ+1)〉,
according to local information at c

(ℓ). In order
to decrease the objective function value to the
largest extent, we could select the determinant
with the largest magnitude of the approximated
gradient at c(ℓ), i.e., |Di(ℓ+1)〉 with

i(ℓ+1) = argmax
j

∣∣∣4b(ℓ)j + 4
((

c
(ℓ)
)⊤

c
(ℓ)
)
c
(ℓ)
j

∣∣∣,

where b
(ℓ) is a compressed approximation of

Hc
(ℓ). However, the above strategy requires

checking each j (i.e., all determinants), which
is prohibitive for even moderate size problems.
Hence, instead of checking all determinants,
CDFCI only checks the H-connected determi-
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nants of |Di(ℓ)〉, i.e.,

i(ℓ+1) =

argmax
j∈IH(i(ℓ))

∣∣∣4b(ℓ)j + 4
((

c
(ℓ)
)⊤

c
(ℓ)
)
c
(ℓ)
j

∣∣∣. (5)

Since our compression strategy introduced
later in Section 2.2.2 truncates unappreciative
determinants, the expression in (5) remains
a good approximation of the exact gradient
at c

(ℓ). Empirically, such a gradient-based
determinant-select strategy outperforms other
perturbation-based determinant-select strate-
gies as used in other SCI algorithms (see Sec-
tion 4 for details).

Once the i(ℓ+1)-th determinant is selected,
CDFCI determines the stepsize by the line
search along that direction so to decrease the
objective function value by the largest amount.
Denoting the update as α, the line search can
be formulated as

α = argmin
α̃∈R

f(c(ℓ) + α̃ei(ℓ+1)). (6)

Since h(α̃) = f(c(ℓ)+ α̃ei(ℓ+1)) is a quartic poly-
nomial in α̃, solving the minimization problem
(6) is equivalent to finding roots of h′(α̃) – the
derivative of h(α̃). If h′(α̃) has a unique root,
then the root is the minimizer. If h′(α̃) has two
roots, then the one with multiplicity one is the
minimizer. If h′(α̃) has three roots, then the
one further away from the middle one is the
minimizer. Given the update α, we can easily
update c

(ℓ) as

c
(ℓ+1)
i =

{
c
(ℓ)
i , i 6= i(ℓ+1);

c
(ℓ)
i + α, i = i(ℓ+1).

(7)

In CDFCI, we also need to maintain b
(ℓ+1) ≈

Hc
(ℓ+1) for future determinant-select steps.

Since only one coefficient is updated in c
(ℓ), the

corresponding b
(ℓ) can be updated accordingly

as,

b
(ℓ+1) ≈ Hc

(ℓ+1) ≈ b
(ℓ) + αH:,i(ℓ+1). (8)

Therefore, each update step requires evaluation
of all H-connections from |Di(ℓ+1)〉. Besides the
update from c

(ℓ+1), we also recalculate the cur-

rent i(ℓ+1)-th entry in b
(ℓ+1) to guarantee the

correctness and increase the numerical stability
of our algorithm. Such a recalculation could im-
prove the accuracy of the determinant-select (5)
and line search (6) in the following iterations,
and also provide an accurate Rayleigh quotient
as the estimator of the ground state energy as
in (11). We argue this correction comes for free
in addition to (8), since

b
(ℓ+1)

i(ℓ+1) =Hi(ℓ+1),:c
(ℓ+1)

=
∑

j∈IH(i(ℓ+1))

(Hj,i(ℓ+1))∗c
(ℓ+1)
j , (9)

where (Hj,i(ℓ+1))∗ denotes the complex conju-
gate of Hj,i(ℓ+1), which has already been eval-
uated when updating (8).

2.2.2 Coefficient compression

Since CDFCI initializes c
(0) with the reference

determinant |D1〉 and b
(0) = Hc

(0), the coef-
ficient of the reference determinant in b

(0) is
nonzero and the reference determinant is in b

(0).
In later iterations, CDFCI is designed to follow
one rule: if a determinant is in c

(ℓ), then it is
in b

(ℓ) as well. Under this rule, if a determi-
nant |Dj〉 is neither in c

(ℓ) nor in b
(ℓ), according

to (5), this determinant has zero value therein
and will not be selected. Hence (5) selects ei-
ther a new determinant not in c

(ℓ) but in b
(ℓ)

or an old determinant already in both c
(ℓ) and

b
(ℓ). In CDFCI, thus, the compression strat-

egy compresses only the unappreciative deter-
minants in b

(ℓ) to control the computation and
memory cost, which in turn restricts the growth
of the coefficient vector c

(ℓ).
Detailed compression strategy is as follows.

When a coefficient αHj,i(ℓ+1) is added to b
(ℓ)
j , we

use a predefined tolerance ε to compress the up-
date. If the j-th determinant is already selected
before, then αHj,i(ℓ+1) is added to b

(ℓ)
j without

any compression. If the j-th determinant has
not been selected in b

(ℓ), but the update is
quantitatively large, i.e.,

∣∣αHj,i(ℓ+1)

∣∣ > ε, it in-
dicates that the j-th determinant is appreciable
and the j-th determinant will be added to b

(ℓ)

with the coefficient αHj,i(ℓ+1). Otherwise, the
update is truncated, i.e., the coefficient in b

(ℓ)

5



remains 0. The described compression strategy
is deterministic and satisfies the rule that deter-
minants with nonzero coefficients in c

(ℓ) are in
b
(ℓ) as well. For molecules, such a deterministic

strategy outperforms other strategies including
stochastic compression schemes17 due to its ef-
fectiveness and cheap cost.

2.2.3 Energy estimation

Although the vector b
(ℓ+1) is compressed, we

emphasize that the Rayleigh quotient r(c) =
c
⊤Hc

c
⊤
c

can be maintained accurately for c
(ℓ+1),

which is used in CDFCI as the estimator of the
ground state energy. First, the squared norm of
c
(ℓ) can be updated up to numerical error, i.e.,

(
c
(ℓ+1)

)⊤
c
(ℓ+1) =

(
c
(ℓ)
)⊤

c
(ℓ) + 2αc

(ℓ)

i(ℓ+1) + α2.

(10)
An exact update can be computed for the nu-
merator of the Rayleigh quotient as well, i.e.,

(
c
(ℓ+1)

)⊤
Hc

(ℓ+1) =
(
c
(ℓ)
)⊤

Hc
(ℓ)

+ 2αb
(ℓ+1)

i(ℓ+1) − α2Hi(ℓ+1),i(ℓ+1),

(11)

where b
(ℓ+1)

i(ℓ+1) is recalculated accurately as dis-
cussed in Section 2.2.1 around (9). Hence this
update is accurate. The Rayleigh quotient of
the updated variational wavefunction, r(c(ℓ+1))
is the ratio of two accurately cumulated quan-
tity and hence accurate. Both in theoretical
and numerical results, we observed that the
Rayleigh quotient is much more accurate than
the projected energy estimator,5,6,8,9 which is
b
(ℓ+1)
1

c
(ℓ+1)
1

in our notation.

Stopping criteria can be tricky for all iter-
ative methods, including DMRG, FCIQMC,
HCI, SHCI, etc, and is also the case for CD-
FCI. Here we propose three suggestions. As for
many iterative methods, we can stop the itera-
tion if the updated value is small. For CDFCI,
it is suggested to monitor the cumulated up-
dated values across a few iterations as the stop-
ping criteria. Another stopping criteria is based
on the change of the Rayleigh quotient. Usu-
ally, we observe monotone decay of the Rayleigh
quotient before iteration converges. Therefore,

we can stop the algorithm if the decay of the
Rayleigh quotient after a few iterations is small.
The third suggestion is based on the ratio of
the number of nonzero coefficients in b and c.
When the algorithm converges, this ratio con-
verges to 1. When the ratio is close to 1, the
error introduced by the compression slows down
the convergence significantly. Hence more itera-
tions do not make much accuracy improvement.
Mixed use of these stopping criteria is suggested
in practice.

We conclude this section with a pseudo-code
for CDFCI:

1. Initialize c
(0) by the reference state |D1〉

with coefficient being 1, initialize b
(0) =

Hc
(0), and initialize ℓ = 0.

2. Select a determinant with the largest gra-
dient magnitude according to (5). Denote
the selected determinant as |Di(ℓ+1)〉.

3. Solve a cubic polynomial equation to ob-
tain the optimal update α for the selected
determinant. Update the i(ℓ+1)-th coeffi-
cient as (7).

4. Update b
(ℓ+1)
j = b

(ℓ)
j + αHj,i(ℓ+1) if the

j-th determinant is already selected in
b
(ℓ). Otherwise, add new determinant
|Dj〉 to b

(ℓ+1) with coefficient αHj,i(ℓ+1) if∣∣αHj,i(ℓ+1)

∣∣ > ε. Exactly reevaluate b
(ℓ+1)

i(ℓ+1)

as (9).

5. Update
(
c
(ℓ+1)

)⊤
c
(ℓ+1) and

(
c
(ℓ+1)

)⊤
Hc

(ℓ+1)

as (10) and (11) respectively. Calculate
the exact Rayleigh quotient for c(ℓ+1).

6. Repeat 2-5 with ℓ ← ℓ + 1 until some
stopping criteria is achieved.

3 Implementation and com-

plexity

We now give some implementation details of the
algorithm, focusing on the computationally ex-
pensive parts and the numerical stability issues.
In the end of this section, a per iteration com-
plexity analysis is conducted.
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The indices of Slater determinants are en-
coded in the way that coincides with that in
the second quantization. Suppose there are norb

spin-orbitals in the FCI discretization, and ne

electrons in the system. Then a Slater deter-
minant is encoded as an norb-bit binary string,
with each bit representing a spin-orbital. The
spin-orbital is occupied if the corresponding bit
is 1 and unoccupied if the bit is 0. The norb-
bit binary string is stored as an array of 64-bit
integers. Thus, ⌈norb

64
⌉ integers are needed to

represent the index of a determinant.
We now focus on the implementation detail of

the determinant-update step, as it dominates
the runtime. Since the vectors b and c are
sparse and compressed in the algorithm, their
entries cannot be contiguously stored in mem-
ory. For CDFCI, we have tried two different
data structure implementations for the com-
bined vector (since the indices of nonzero coef-
ficients of c are contained in b, these two vector
are stored together in a single data structure):
red-black tree and hash table.18

Red-black tree is a memory compact repre-
sentation of the vector: Given that b at current
iteration has n nonzero coefficients, red-black
tree requires O(n) memory. Inserting, updating
and deleting a nonzero coefficient to this red-
black tree cost O(logn) operations. The draw-
back is that each nonzero coefficient is a node
on the tree and hence requires extra memory
to store pointers, which turns out to be more
expensive comparing to the hash table.

In CDFCI, therefore, we prefer to use a fixed-
size open addressing hash table. The hash func-
tion mapping a configuration string to an array
index is chosen as

Hash(d) = s · d (mod p), (12)

where the size of the hash table is chosen to
be a large prime number p; d is the vector of
⌈norb

64
⌉ integers with bits representing the con-

figuration of the determinant; and s is a fixed
vector of the same length as d with entries ran-
domly chosen from [0, p− 1] during the CDFCI
initialization step. In our current implementa-
tion, for each execution of the algorithm, we
allocate an array of size approaching machine

memory limit for the hash table, which could
be modified to enable dynamic resizing feature
in order to be memory compact. Inserting, up-
dating and deleting a nonzero coefficient in hash
table cost O(1) operations on average; while in
the worst case, when the table is almost full, in-
serting and deleting operation would cost O(p)
operations. In order to avoid such inefficient
scenarios, we limit the load factor below 80%.
In practice, these settings of hash table work
well and significantly outperform red-black tree.
All the numerical results in this paper are pro-
duced with hash table.

Besides the expensive data accessing step, the
computational expensive step is the evaluation
of H:,i(ℓ+1). Let NH = maxi |IH(i)| be the max-
imum number of nonzero entries in columns
of the Hamiltonian matrix. Although NH ≪
NFCI, NH still scales as O(n2

en
2
orb). The compu-

tational cost for evaluating each entry Hi,j also
depends moderately on ne. CDFCI uses an ef-
ficient Fortran implemented open source quan-
tum chemistry code Hande-QMC as backend
for the evaluation of Hamiltonian entries.

Shared memory parallelism based on
OpenMP is used in our implementation. For
each iteration, the double excitation calcu-
lation is the bottleneck for the evaluation
H:,i(ℓ+1), which is embarrassingly parallelized
with OpenMP. In terms of runtime, access-
ing a nonzero coefficient of b and c is also
expensive due to the lack of memory continu-
ity. Therefore, we also parallelize the access
to bIH (i(ℓ+1)) and cIH (i(ℓ+1)) with OpenMP. Due
to the possible collision of the hash function of
open addressing, we partition the hash array
into 2000 blocks and set locker for each block,
such that no two threads can access the same
block simultaneously. Increasing the number of
lockers would reduce the idling time of threads
but would increase the memory cost. We did
not try to optimize the number of blocks.

Last point on implementation focuses on the
numerical stability of the Rayleigh quotient.
Different from other iterative methods, CDFCI
updates one determinant per iteration. Hence,
for large systems, the number of iteration could
easily go beyond 108. For cumulated quantities
such as c⊤c and c

⊤Hc, the value is updated at
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least 108 times, hence the accumulated numer-
ical error could pollute the chemical accuracy,
and thus careful treatment is needed. In our
implementation, we use a quadruple-precision
floating point for c

⊤
c and c

⊤Hc such that the
relative error is at most 10−16 unless the num-
ber of iteration exceeds 1016.

Let us remark that our current implementa-
tion of CDFCI is by no means optimal. The
bottleneck of the current implementation is the
naïve hash table. Random access to the main
memory is expensive since the cache hierarchy
is not fully adapted. An optimized hash ta-
ble may improve the performance by a big con-
stant.

To conclude the section, let us conduct a lead-
ing order per iteration complexity analysis for
CDFCI. In determinant-select step, since all b(ℓ)i

and c
(ℓ)
i for i ∈ IH(i(ℓ+1)) have been accessed in

the previous iteration, i(ℓ+1) can be computed
without paying the cost of accessing the data
structure of b and c. Hence the leading cost
is O(NH) with a small prefactor. Line search
and updating c cost O(1) operations and are
hence negligible. Updating b is the most ex-
pensive step throughout the algorithm. It re-
quires evaluating O(NH) entries of Hamiltonian
matrix and accessing b and c O(NH) times.
This step costs O(NH) operation with a prefac-
tor being the Hamiltonian per entry evaluation
cost plus the averaged data structure access-
ing cost. In our implementation, the compres-
sion step is combined with the updating step.
Once H:,i(ℓ+1) has been evaluated, b

(ℓ)
i and c

(ℓ)
i

for i ∈ IH(i(ℓ+1)) are accessed, then exact up-
date of b

(ℓ+1)

i(ℓ+1) , cumulative updates of c
⊤
c and

c
⊤Hc cost O(NH) operations with a small pref-

actor. Overall, CDFCI costs O(NH) operations
per iteration with the prefactor dominated by
the computation cost of one Hamiltonian entry
and the averaged access cost of the data struc-
ture. The memory cost of CDFCI is dominated
by the cost of allocating the data structure.

4 Numerical results

In this section, we perform a sequence of numer-
ical experiments to demonstrate the efficiency

of CDFCI. First, we compare the performance
of CDFCI, Heat-bath CI (HCI), DMRG and iF-
CIQMC on H2O, C2 and N2 under cc-pVDZ ba-
sis. Then, we benchmark the binding curve of
nitrogen dimer under cc-pVDZ basis using CD-
FCI up to 10−3 mHa accuracy. Finally, we use
CDFCI to calculate the ground state energy of
chromium dimer Cr2 under the Ahlrichs VDZ
Basis at r = 1.5Å, which is a well-known chal-
lenging task due to the strong correlation.

In all experiments, the orbitals and inte-
grals are calculated via restricted Hartree Fock
(RHF) in Psi419 package. All the reported en-
ergies are in Hartree (Ha) but the length unit is
in either Bohr radius (a0) or ångström (Å) due
to different configurations in the references.

4.1 Numerical results of H2O, C2,

and N2

We first compare the performance of CDFCI
with other algorithms, HCI, DMRG and iF-
CIQMC. In this paper, we choose iFCIQMC in-
stead of FCIQMC or semi-stochastic FCIQMC
because it balances well among bias, variance
and runtime. CDFCI is implemented as stated
in Section 3 with the on-the-fly Hamiltonian
elements evaluation interfaced from Hande-

QMC.20,21 HCI adopts the original implemen-
tation in Dice;13 DMRG adopts the widely
used implementation in Block;4,22–25 iF-
CIQMC adopts the implementation in Hande-

QMC. All programs are compiled by Intel
compiler 19.0.144 with -O3 option. MPI and
OpenMP support are disabled for all programs
in this section. All the tests in this section are
produced on a machine with Intel Xeon CPU
E5-1650 v2 @ 3.50GHz and 64GB memory. For
all algorithms, the Hartree-Fock state is used
as the initial wavefunction. Most parameters
in CDFCI, HCI, DMRG, and iFCIQMC will
be clearly stated in the later content. Any
unspecified parameter is set to be the default
value. Besides the specified or default param-
eters, iFCIQMC adopts time step τ = 0.001
and initializes with 100 walkers at Hartree-
Fock state for all tests. In all algorithms, the
energy is reported without any perturbation
or extrapolation post-calculation. Variational
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energy (Rayleigh quotient) is reported for CD-
FCI, HCI and DMRG, while projected energy
is reported for iFCIQMC. We emphasize that
similar perturbation calculation as in HCI can
also be applied to CDFCI and the comparison
is left as future work.

In this section, we test the four algorithms
on three molecules: H2O with OH bond length
1.84345a0 and HOH bond angle 110.6°,5,26 C2

with bond length 1.24253Å13,27 and N2 with
bond length 2.118a0.28 The properties of the
systems are summarized in Table 1, where the
reference ground state energy is calculated by
CDFCI to a high precision.

4.1.1 H2O molecule

Table 2 and Figure 2 illustrate numerical results
for H2O. In Table 2, we report the detailed re-
sults and the corresponding used parameters.
Besides these parameters, we run iFCIQMC
with different target population for 100000 it-
erations and then report the runtime. We cal-
culate the cumulative average of energy start-
ing from iteration 30000, at which iFCIQMC
reaches the target population. Figure 2 plots
the convergence of the energy against the wall-
clock time based on the results in Table 2. For
iFCIQMC, we plot the curve of projected en-
ergy of m = 500000 as well as the cumulative
average of energy starting at iteration 30000.

From Table 2 and Figure 2, we shall see
that all algorithms reach chemical accuracy ef-
ficiently. CDFCI has a good performance in
general. The energy drops quickly to the level
of 0.1 mHa accuracy at the beginning. Then
it has a slower but steady linear decay. This
behavior proves the rationale behind CDFCI:
contributions of different determinants to the
FCI energy vary a lot, especially in the early
stage of iterations. Since CDFCI always up-
dates the “best” determinant at each iteration,
it is able to reach high accuracy with only a few
iterations.

For small molecules like H2O, HCI is also
an excellent algorithm and costs less time to
achieve the same accuracy comparing to CD-
FCI. It shows that the determinant selecting
strategy used in HCI, which relies on decaying
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Figure 2: Convergence of ground state energy
of H2O against wall clock time. Each point or
curve represents one test as in Table 2. For
iFCIQMC, projected energy and its cumulative
average from iteration 30000 are plotted with
target population m = 500000.

property of Hamiltonian entries, is also quite
efficient for molecules. For example, when ε1 =
5.0×10−6, HCI uses only 3006594 determinants
to reach 2.0 × 10−5 Ha accuracy, whereas CD-
FCI uses 1823176 determinants, which is about
60% determinants used by HCI to achieve the
same accuracy.

The speedup of HCI over CDFCI is due to the
different implementation strategies of the algo-
rithms. The implementation of HCI in Dice

stores the submatrix of the Hamiltonian with
respect to the selected determinants in the main
memory, and reuses them for inner Davidson
iterations. Both the submatrix and the vector
are stored and accessed in contiguous memory.
Therefore, two advantages of the implementa-
tion come into play: one-time evaluation of
Hamiltonian entries and efficient usage of mem-
ory hierarchy. However, the disadvantage is
also obvious: huge memory cost for the subma-
trix. In Table 2 and Figure 2, we do not report
results for smaller ε1 because Dice reaches the
memory limit. The high memory cost is also the
reason why the variational stage of HCI does
not perform good for chromium dimer (see Sec-
tion 4.3). As a comparison, CDFCI uses a dif-
ferent philosophy in the implementation. CD-
FCI calculates the Hamiltonian entries on-the-
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Table 1: Properties of test molecule systems. HF energy and GS energy denote Hartree-Fock energy
and ground state energy respectively.

Molecules Basis Electrons Orbitals Dimension HF Energy GS Energy

H2O cc-pVDZ 10 24 4.53× 108 -76.0240386 -76.2418601
C2 cc-pVDZ 12 28 1.77× 1010 -75.4168820 -75.7319604
N2 cc-pVDZ 14 28 1.75× 1011 -108.9493779 -109.2821727

fly, which saves all memory for the coefficient
vector, and stores the coefficients in a hash ta-
ble. Hence much more coefficients can be used
to represent the ground state but paying the
cost of repeated evaluation of Hamiltonian en-
tries and limited usage of memory hierarchy.

DMRG also achieves high accuracy in reason-
able time with small memory cost. But it is
always slower than CDFCI and HCI for H2O.

iFCIQMC is slower than CDFCI, HCI and
DMRG in this example. In the test we stop
iFCIQMC at 100000 iterations and report the
wall time. In Figure 2 we see the convergence
behavior of iFCIQMC projected energy. It can
reach accuracy level of 1 mHa very efficiently,
but hard to converge to higher accuracy due to
the slow convergence of Monte Carlo. It is pos-
sible to use more walkers and potentially con-
verges in fewer iterations. However, as shown
in Table 2, moderate increase of the amount of
walkers does not change the convergence behav-
ior.

4.1.2 Carbon dimer and nitrogen dimer

Carbon dimer C2 and nitrogen dimer N2 are
more challenging than H2O molecule since their
correlation is stronger and the dimension NFCI

is higher. The results of C2 are reported in Ta-
ble 3 and Figure 3; and the results of N2 are
reported in Table 4 and Figure 4. In general,
C2 costs more time than H2O to converge to a
fixed accuracy and N2 costs more time than C2,
which agrees with their system complexities.

CDFCI shows similar convergence pattern for
C2 and N2, with fast decay at the beginning
followed by a slower but steady linear decay. It
takes only several minutes to reach the chemi-
cal accuracy. Therefore, CDFCI is consistently
efficient for different systems with different cor-
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Figure 3: Convergence of ground state energy
of C2 against wall clock time. Each point or
curve represents one test as in Table 3. For
iFCIQMC, projected energy and its cumulative
average from iteration 100000 are plotted with
target population m = 500000.

relation strength.
HCI also shows similar convergence behavior

for C2 and N2. It converges to chemical accu-
racy the fastest among tested algorithms. How-
ever, HCI can not converge to higher accuracy
due to the memory limit of the implementation.
Comparing to CDFCI in terms of the number
of operations, however, CDFCI uses less oper-
ations and determinants than HCI to the same
accuracy level, as in the case of H2O.

DMRG also performs similar for C2 and N2

but is significantly slower than CDFCI and
HCI. One reason is that DMRG needs more
iterations to converge due to the strong cor-
relation. In this sense, determinant selecting
algorithms are less affected by the correlation
strength than DMRG.

iFCIQMC, however, has very different behav-
ior for C2 and N2. For C2, iFCIQMC gets stuck
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Table 2: Convergence of ground state energy of H2O. For CDFCI, we run the test once and report
the wall time to reach the accuracy. For other tests, each row corresponds to one test. We also
report the wall time for CDFCI to reach the same accuracy as well as the ratio of the wall time
of the method over the wall time of CDFCI in the last two columns. iFCIQMC runs for 100000
iterations and reports the cumulative average of projected energy.

Algorithm Parameter Energy Error Time(s)
CDFCI

Time(s) Ratio

CDFCI ε = 0

-76.2318601 1.0× 10−2 3.7 -
-76.2408601 1.0× 10−3 96.2 -
-76.2417601 1.0× 10−4 592.5 -
-76.2418501 1.0× 10−5 2780.0 -
-76.2418591 1.0× 10−6 9569.5 -
-76.2418600 1.0× 10−7 25227.5 -
-76.2418601 1.0× 10−8 54242.2 -

HCI

ε1 = 1.0× 10−4 -76.2412891 5.7× 10−4 58.4 156.3 0.37x
ε1 = 2.0× 10−5 -76.2417533 1.1× 10−4 312.9 565.3 0.55x
ε1 = 1.0× 10−5 -76.2418109 4.9× 10−5 593.5 993.1 0.60x
ε1 = 5.0× 10−6 -76.2418402 2.0× 10−5 1148.3 1823.2 0.63x

DMRG

maxM = 500 -76.2418170 4.3× 10−5 1731 1089.7 1.59x
maxM = 1000 -76.2418557 4.4× 10−6 5224 4435.7 1.18x
maxM = 2000 -76.2418596 4.5× 10−7 17839 13802.6 1.29x
maxM = 4000 -76.2418599 1.7× 10−7 77023 20585.9 3.74x

iFCIQMC

m = 50000 -76.2418966 −3.7 × 10−5 3191.9 1221.5 2.61x
m = 100000 -76.2418266 3.4× 10−5 6131.4 1294.2 4.74x
m = 500000 -76.2418416 1.9× 10−5 28001 1909.1 14.67x
m = 1000000 -76.2418816 −2.2 × 10−5 54008 1734.9 31.13x

at a sub-optimal state for a long time and then
shows convergence to the optimal state. The
energy drops to the one near the underlying
truth after about 80000 iterations. Hence, iF-
CIQMC is less efficient for C2. For N2, iF-
CIQMC does not get stuck and performs well
as in the case of H2O. Similar conclusion as in
Section 4.1.1 also applies here. However, the in-
stance of m = 100000, iFCIQMC outperforms
all other methods in time.

In conclusion, as shown in both Section 4.1.1
and Section 4.1.2, CDFCI is efficient for both
weakly-correlated and strongly-correlated sys-
tems. It can achieve chemical accuracy effi-
ciently and is able to achieve higher accuracy
in all tested molecules. HCI costs more op-
erations than CDFCI to achieve the same ac-
curacy but costs less time due to the differ-

ent philosophies in implementations. Compar-
ing to CDFCI and HCI, DMRG is less efficient
for strongly-correlated systems. While simi-
lar as CDFCI, DMRG can also achieve much
higher accuracy than the chemical accuracy. iF-
CIQMC, compared to the above three, is less
efficient for H2O and C2, but has comparable
efficiency for N2. It drops to a non-reliable
accuracy level in the first few iterations (see
the difference between Figure 3 and Figure 4)
and then converges slowly at the rate of Monte
Carlo method. Such a non-reliability requires
user to run iFCIQMC with different parame-
ters several times in order to be confident with
the results.

In terms of the usability, CDFCI, HCI, and
DMRG only have one single parameter to be
tuned, whereas iFCIQMC has more parame-
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Table 3: Convergence of ground state energy of C2. iFCIQMC runs for 200000 iterations and
reports the cumulative average of projected energy.

Algorithm Parameter Energy Error Time(s)
CDFCI

Time(s) Ratio

CDFCI ε = 3.0× 10−8

-75.7219604 1.0× 10−2 49.0 -
-75.7309604 1.0× 10−3 388.2 -
-75.7318604 1.0× 10−4 2687.3 -
-75.7319504 1.0× 10−5 13717.6 -
-75.7319594 1.0× 10−6 55210.2 -

HCI

ε1 = 1.0× 10−4 -75.7305361 1.4× 10−3 100.9 277.8 0.36x
ε1 = 2.0× 10−5 -75.7317130 2.5× 10−4 745.0 1319.1 0.56x
ε1 = 1.0× 10−5 -75.7318541 1.1× 10−4 1261.8 2565.2 0.49x
ε1 = 5.0× 10−6 -75.7319170 4.4× 10−5 2644.3 4989.8 0.53x

DMRG

maxM = 500 -75.7312704 6.9× 10−4 8624 544.4 15.84x
maxM = 1000 -75.7318227 1.4× 10−4 14163 2102.9 6.73x
maxM = 2000 -75.7319403 2.0× 10−5 24377 8582.9 2.84x
maxM = 4000 -75.7319583 2.2× 10−6 68071 35435 1.92x

iFCIQMC

m = 50000 -75.7367857 −4.8 × 10−3 7084.2 89.6 79.1x
m = 100000 -75.7244332 7.5× 10−3 13966.2 59.9 233.2x
m = 500000 -75.7271174 4.8× 10−3 69008.2 89.6 770.2x
m = 1000000 -75.7345396 −2.6 × 10−3 136063.8 158.4 859.0x

ters. The proper parameter in CDFCI can
be revealed in a few minutes, judging from
whether the stabilized vector b properly uti-
lizes the given amount of memory. While, in
HCI and DMRG, the tuning procedure is rel-
atively more complicated and is related to the
final convergence behavior. We conclude that
CDFCI is an easy-to-use efficient algorithm for
FCI problems.

4.2 Binding curve of N2

In this section, we benchmark the all-electron
nitrogen binding curve using CDFCI under the
Dunning’s cc-pVDZ basis. The nitrogen bind-
ing curve is a well-known difficult problem.
When the nitrogen atoms are stretched away
from the equilibrium geometry, Hartree-Fock
theory no longer gives a good approximation
and the system becomes multi-referenced due to
the triple bond between the atoms. DMRG and
coupled cluster theory, e.g., CCSD, CCSD(T),
CCSDT, etc., have been tested on this prob-
lem, but only on 6 geometry configurations.28

Here we show that CDFCI is capable to ef-
ficiently benchmark the all-electron nitrogen
binding curve on a very fine grid of bond length
and the variational energy converges to at least
10−3 mHa accuracy in each configuration.

In this problem, there are 14 electrons and 28
orbitals, and the dimension of the FCI space
is about NFCI ≈ 1.75 × 1011. In all configu-
rations, ε = 10−6 is used in CDFCI for trun-
cation. Here we use the same computing en-
vironment as in Section 4.1 but with OpenMP
enabled with 5 threads. Each configuration on
the bind curve results take roughly one day to
achieve the 10−3 mHa accuracy. Figure 5 shows
the binding curve and Table 7 and 8 in Ap-
pendix A list all converged variational energies
for every configuration in the figure. In Table 5,
we compare selected results obtained from CD-
FCI with that from other algorithms reported
in Ref. 28.

Several remarks are in order regarding the
benchmark results. First, Figure 5 demon-
strates a smooth standard shape binding curve.

12



Table 4: Convergence of energy of N2. iFCIQMC runs for 100000 iterations and reports the
cumulative average of projected energy.

Algorithm Parameter Energy Error Time(s)
CDFCI

Time(s) Ratio

CDFCI ε = 5.0× 10−7

-109.2721727 1.0× 10−2 33.4 -
-109.2811727 1.0× 10−3 752.6 -
-109.2820727 1.0× 10−4 7892.6 -
-109.2821627 1.0× 10−5 49862.6 -

HCI

ε1 = 1.0× 10−4 -109.2805259 1.7× 10−3 100.7 427.1 0.24x
ε1 = 2.0× 10−5 -109.2817822 3.9× 10−4 730.9 2107.4 0.35x
ε1 = 1.0× 10−5 -109.2819787 1.9× 10−4 1335.2 4266.8 0.31x
ε1 = 5.0× 10−6 -109.2820857 8.7× 10−5 3330.0 8920.3 0.37x

DMRG

maxM = 500 -109.2809830 1.2× 10−3 9936 619.6 16.04x
maxM = 1000 -109.2818757 3.0× 10−4 17647 2806.7 6.29x
maxM = 2000 -109.2821098 6.3× 10−5 37549 11857.1 3.12x
maxM = 4000 -109.2821632 9.5× 10−6 85703 51574.7 1.66x

iFCIQMC

m = 50000 -109.2823417 −1.7× 10−4 3760.7 4861.6 0.77x
m = 100000 -109.2822053 −3.3× 10−5 7373.6 20477.5 0.36x
m = 500000 -109.2820829 9.0× 10−5 35933 8680.7 4.14x
m = 1000000 -109.2821287 4.4× 10−5 71755 15998.0 4.49x

Different from the carbon binding curve,13 no
jump is observed in our benchmark results,
where D2h symmetry is used for all configura-
tions. Second, Table 5 shows that CDFCI gives
the lowest energy. CDFCI energy is accurate
beyond the level of 10−3 mHa whereas DMRG
is accurate up to 10−2 mHa. The DMRG re-
sults in Table 5 are taken from previous work,28

which agree with the results obtained in Sec-
tion 4.1.2. Other algorithms such as CCSDTQ
are much less accurate. Third, the more the
nitrogen dimer molecule is stretched from the
equilibrium, the more determinants and iter-
ations are needed for CDFCI to converge to
10−3 mHa accuracy. This is because Hartree-
Fock theory only works well near equilibrium
configuration. However, the number of deter-
minants and iterations do not increase signif-
icantly, which shows the efficiency of CDFCI
again. Other algorithms become less accurate
for larger stretching distance.

4.3 All electron chromium dimer

calculation

Chromium dimer is hard to compute due to its
strong correlation. We calculate the all-electron
molecule using CDFCI under the Ahlrichs VDZ
basis with radius r = 1.5Å. There are 48 elec-
trons and 42 orbitals, and the dimension of the
FCI space is about 2×1022. Many methods have
been applied to this problem including DMRG4

and HCI.13 Table 6 summarizes all results, in-
cluding our CDFCI results and others from lit-
erature.4,13

In this paper, we only consider variational
ground state energy without any perturbation
or extrapolation. Regarding the variational
ground energy, CDFCI achieves lowest energy
among all algorithms in one month running
time on a machine with Intel Xeon CPU E5-
1650 v3 @ 3.50GHz and 128GB memory. Both
DMRG (maxM = 8000) and CDFCI achieve
the chemical accuracy if the energy of DMRG
(extrapolated) is regarded as the ground truth.
But HCI(variational) and coupled cluster the-
ory cannot achieve chemical accuracy. HCI con-
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Table 5: Nitrogen molecule ground state energy using CDFCI, DMRG (maxM = 4000) and couple
cluster theories. Slant digits indicate inaccurate digits. All results except CDFCI are from Ref. 28.

Bond Length 2.118a0 2.4a0 2.7a0 3.0a0 3.6a0 4.2a0

CDFCI -109.282173 -109.241908 -109.163600 -109.089405 -108.998083 -108.970132
DMRG -109.282157 -109.241886 -109.163572 -109.089380 -108.998052 -108.970090
CCSD -109.267626 -109.219794 -109.131491 -109.052884 -108.975885 -108.960244

CCSDTQ -109.281943 -109.241321 -109.162264 -109.086502 -108.993736 -108.968124
MRCISD -109.275356 -109.234925 -109.156473 -109.082149 -108.990759 -108.963070
MRCCSD -109.280646 -109.240362 -109.161969 -109.087613 -108.995885 -108.967865
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Figure 4: Convergence of ground state energy
of N2 against wall clock time. Each point or
curve represents one test as in Table 4. For
iFCIQMC, projected energy and its cumulative
average from iteration 30000 are plotted with
target population m = 500000.

verges to −2086.384 Ha in about eight min-
utes,13 whereas CDFCI reaches the same accu-
racy in about twenty minutes, although differ-
ent computing environments are used. As the
dimension of the Hamiltonian becomes larger
and the system becomes more correlated, HCI
can only afford storing the submatrix in the
main memory with very limited number of de-
terminants and such a limited number can-
not achieve higher accuracy in the variational
phase. With perturbation phase enabled, HCI
can achieve accuracy less than 1 mHa. Similar
perturbation phase can be adapted to CDFCI
to further boost the accuracy or extend the ap-
plicability of our algorithm to larger systems.
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Figure 5: Binding curve of N2 under cc-pVDZ
basis.

5 Conclusion and discussion

The proposed coordinate descent FCI (CDFCI)
is an easy-to-use, accurate, and efficient algo-
rithm for full configuration interaction eigen-
value problems of quantum many-body sys-
tems, especially for strongly correlated systems.
The only tuning parameter in CDFCI, ε, con-
trols the trade-off between memory cost and
accuracy. Given the fixed amount of mem-
ory, the “close-to-optimal” ε can be determined
within a few minutes without waiting for con-
vergent results. Hence, we believe that CDFCI
is one of the most easy-to-use algorithms among
competitors. Besides the user friendly prop-
erty, CDFCI performs competitively with many
other methods, including heat-bath configura-
tion interaction (HCI), density matrix renor-
malization group (DMRG), and initiator full
configuration interaction quantum Monte Carlo
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Table 6: Energy of Cr2.

Algorithm Energy (Ha)

HCI (variational) −2086.384
CCSD(T) −2086.422229
CCSDTQ −2086.430244

DMRG (maxM = 8000) −2086.443334
CDFCI −2086.443565

HCI (perturbed) −2086.44404
DMRG (extrapolated) −2086.444784

(iFCIQMC). The CDFCI can give the state-
of-art results for many strongly correlated FCI
problems.

There are a few immediate future work of CD-
FCI. Apply CDFCI to current examples with
larger basis sets and other more challenging
systems; add perturbation stage to further im-
prove the accuracy; and, parallelize CDFCI in a
distributed-memory setting. Besides these, we
are also exploring (semi-)stochastic CDFCI to
improve the parallelizability of the algorithm,
and further accelerating the initial iterations.
Replacing the current hash function with a
more efficient one to fully utilize the memory
hierarchy is also under investigation. It is also
interesting to design an auto-tuning procedure
for “close-to-optimal” ε to remove the only tun-
ing parameter in the algorithm.

Beyond ground state computation, CDFCI is
also suitable for excited state computation. The
extension of the optimization problem (4) to
low-lying k excited states can be achieved with-
out orthogonality constraint, i.e.,

min
c∈RNFCI×k

f(c) =
∥∥H + cc

⊤
∥∥2

F
. (13)

This is favorable as it removes the expensive or-
thogonalization step for FCI wavefunctions dur-
ing iterations. Hence extending CDFCI to solve
low-lying excited states is another promising fu-
ture direction to be explored.
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A N2 Binding Curve

Figure 5 plots the binding curve of nitrogen
dimer in cc-pVDZ basis with data given in Ta-
ble 7 and Table 8. The bond length of nitrogen
dimer in equilibrium geometry is 2.118a0. Ta-
ble 7 and Table 8 list variational energies of
nitrogen dimer produced by CDFCI with bond
lengths smaller and larger than 2.118a0 respec-
tively. In both tables, CDFCI used ε = 10−6 as
the truncation threshold.

The bond lengths are selected through the fol-
lowing two steps. CDFCI first calculates ener-
gies for a vector of bond lengths linearly spaced
between and including 1.50a0 and 4.50a0 with
gap 0.10a0. Then, according to the initial rough
binding curve, another vector of bond lengths
is added to smooth out the curve. These added
bond lengths are in the sharp changing range
around the equilibrium setting.

Table 7: Energy of nitrogen dimer with bond
length smaller than that of equilibrium geom-
etry. The energy refers to variational ground
state energy calculated by CDFCI with ε =
10−6.

Bond length (a0) Energy (Ha)

1.50 −108.6300476
1.55 −108.7719968
1.60 −108.8888460
1.65 −108.9843136
1.70 −109.0615754
1.75 −109.1233484
1.80 −109.1719641
1.85 −109.2094264
1.90 −109.2374578
1.95 −109.2575411
2.00 −109.2709530
2.05 −109.2787896
2.10 −109.2819938
2.118 −109.2821727

Table 8: Energy of nitrogen dimer with bond
length larger than that of equilibrium geometry.
The energy refers to variational ground state
energy calculated by CDFCI with ε = 10−6.

Bond length (a0) Energy (Ha)

2.118 −109.2821727
2.15 −109.2813737
2.20 −109.2776211
2.25 −109.2713283
2.30 −109.2630013
2.35 −109.2530718
2.40 −109.2419079
2.45 −109.2298228
2.50 −109.2170830
2.60 −109.1905077
2.70 −109.1635998
2.80 −109.1373583
2.90 −109.1124729
3.00 −109.0894053
3.10 −109.0684502
3.20 −109.0497787
3.30 −109.0334619
3.40 −109.0194835
3.50 −109.0077466
3.60 −108.9980829
3.70 −108.9902691
3.80 −108.9840499
3.90 −108.9791625
4.00 −108.9753572
4.10 −108.9724102
4.20 −108.9701316
4.30 −108.9683664
4.40 −108.9669909
4.50 −108.9659102
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