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This paper introduces the multidimensional butterfly factorization as a data-sparse 
representation of multidimensional kernel matrices that satisfy the complementary 
low-rank property. This factorization approximates such a kernel matrix of size 
N × N with a product of O(logN) sparse matrices, each of which contains 
O(N) nonzero entries. We also propose efficient algorithms for constructing this 
factorization when either (i) a fast algorithm for applying the kernel matrix and 
its adjoint is available or (ii) every entry of the kernel matrix can be evaluated 
in O(1) operations. For the kernel matrices of multidimensional Fourier integral 
operators, for which the complementary low-rank property is not satisfied due to a 
singularity at the origin, we extend this factorization by combining it with either 
a polar coordinate transformation or a multiscale decomposition of the integration 
domain to overcome the singularity. Numerical results are provided to demonstrate 
the efficiency of the proposed algorithms.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Problem statement

This paper is concerned with the efficient evaluation of

u(x) =
∑
ξ∈Ω

K(x, ξ)g(ξ), x ∈ X, (1)

where X and Ω are typically point sets in Rd for d ≥ 2, K(x, ξ) is a kernel function that satisfies a 
complementary low-rank property, g(ξ) is an input function for ξ ∈ Ω, and u(x) is an output function 
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for x ∈ X. To define this complementary low-rank property for multidimensional kernel matrices, we first 
assume that without loss of generality there are N points in each point set. In addition, the domains X
and Ω are associated with two hierarchical trees TX and TΩ, respectively, where each node of these trees 
represents a subdomain of X or Ω. Both TX and TΩ are assumed to have L = O(logN) levels with X and Ω
being the roots at level 0. The computation of (1) is essentially a matrix–vector multiplication

u = Kg,

where K := (K(x, ξ))x∈X,ξ∈Ω, g := (g(ξ))ξ∈Ω, and u := (u(x))x∈X by a slight abuse of notations. The 
matrix K is said to satisfy the complementary low-rank property if for any level � between 0 and L and for 
any node A on the �-th level of TX and any node B on the (L − �)-th level of TΩ, the submatrix KA,B :=
(K(xi, ξj))xi∈A,ξj∈B is numerically low-rank with the rank bounded by a uniform constant independent 
of N . In most applications, this numerical rank is bounded polynomially in log(1/ε) for a given precision ε. 
A well-known example of such a matrix is the multidimensional Fourier transform matrix.

For a complementary low-rank kernel matrix K, the butterfly algorithm developed in [1,2,13,14,16] en-
ables one to evaluate the matrix–vector multiplication in O(N logN) operations. More recently in [7], we 
introduced the butterfly factorization as a data-sparse multiplicative factorization of the kernel matrix K
in the one-dimensional case (d = 1):

K ≈ ULGL−1 · · ·GL/2ML/2
(
HL/2

)∗
· · ·

(
HL−1)∗ (V L

)∗
, (2)

where the depth L = O(logN) is assumed to be an even number and every factor in (2) is a sparse matrix 
with O(N) nonzero entries. Here the superscript of a matrix denotes the level of the factor rather than the 
power of a matrix. This factorization requires O(N logN) memory and applying (2) to any vector takes 
O(N logN) operations once the factorization is computed. In fact, one can view the factorization in (2)
as a compact algebraic representation of the butterfly algorithm. In [7], we also introduced algorithms for 
constructing the butterfly factorization for the following two cases:

(i) A black-box routine for rapidly computing Kg and K∗g in O(N logN) operations is available;
(ii) A routine for evaluating any entry of K in O(1) operations is given.

In this paper, we turn to the butterfly factorization for the multidimensional problems and describe how to 
construct them for these two cases.

When the kernel strictly satisfies the complementary low-rank property (e.g., the non-uniform FFT), the 
algorithms proposed in [7] can be generalized in a rather straightforward way. This is presented in detail in 
Section 2.

However, many important multidimensional kernel matrices fail to satisfy the complementary low-rank 
property in the entire domain X × Ω. Among them, the most significant example is probably the Fourier 
integral operator, which typically has a singularity at the origin ξ = 0 in the Ω domain. For such an example, 
existing butterfly algorithms provide two solutions:

• The first one, proposed in [2], removes the singularity by applying a polar transformation that maps 
the domain Ω into a new domain P . After this transformation, the new kernel matrix defined on X×P

satisfies the complementary low-rank property and one can then apply the butterfly factorization in the 
X and P domain instead. This is discussed in detail in Section 3 and we refer to this algorithm as the 
polar butterfly factorization (PBF).

• The second solution proposed in [8] is based on the observation that, though not on the entire Ω domain, 
the complementary low-rank property holds in subdomains of Ω that are well separated from the origin 
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in a certain sense. For example, one can start by partitioning the domain Ω into a disjoint union of a 
small square ΩC covering ξ = 0 and a sequence of dyadic coronas Ωt, i.e., Ω = ΩC ∪(∪tΩt). Accordingly, 
one can rewrite the kernel evaluation (1) as a summation of the form

K = KCRC +
∑
t

KtRt, (3)

where KC and Kt are the kernel matrices restricted to X×ΩC and X×Ωt, RC and Rt are the operators 
of restricting the input functions defined on Ω to the subdomain ΩC and Ωt, respectively. In fact, each 
kernel Kt satisfies the complementary low-rank property and hence one can approximate it with the 
multidimensional butterfly factorization in Section 2. Combining the factorizations for all Kt with (3)
results the multiscale butterfly factorization (MBF) for the entire matrix K and this will be discussed 
in detail in Section 4.

In order to simplify the presentation, this paper focuses on the two dimensional case (d = 2). Furthermore, 
we assume that the points in X and Ω are uniformly distributed in both domains as follows:

X =
{
x =

(n1

n
,
n2

n

)
, 0 ≤ n1, n2 < n with n1, n2 ∈ Z

}
(4)

and

Ω =
{
ξ = (n1, n2),−

n

2 ≤ n1, n2 <
n

2 with n1, n2 ∈ Z

}
, (5)

where n is the number of points in each dimension and N = n2. This is the standard setup for two 
dimensional Fourier transforms and FIOs.

1.2. Related work

For a complementary low-rank kernel matrix K, the butterfly algorithm provides an efficient way for 
evaluating (1). It was initially proposed in [13] and further developed in [2,6,8,14–17,20]. One can roughly 
classify the existing butterfly algorithms into two groups:

• The first group (e.g. [14,16,17]) requires a precomputation stage for constructing the low-rank approx-
imations of the numerically low-rank submatrices of (1). This precomputation stage typically takes 
O(N2) operations and uses O(N logN) memory. Once the precomputation is done, the evaluation of 
(1) can be carried out in O(N logN) operations.

• The second group (e.g. [2,6,8,15]) assumes prior knowledge of analytic properties of the kernel function. 
Under such analytic assumptions, one avoids precomputation by writing down the low-rank approxima-
tions for the numerically low-rank submatrices explicitly. These algorithms typically evaluate (1) with 
O(N logN) operations.

In a certain sense, the algorithms proposed in this paper can be viewed as a compromise of these two 
types. On the one hand, it makes rather weak assumptions about the kernel. Instead of requiring the kernel 
function as was done for the second type, we only assume that either (i) a fast matrix–vector multiplication 
routine or (ii) a kernel matrix sampling routine is available. On the other hand, these new algorithms reduce 
the precomputation cost to O(N3/2 logN), as compared to the quadratic complexity of the first group.

The multidimensional butterfly factorization can also be viewed as a process of recovering a structured 
matrix via either sampling or matrix–vector multiplication. There has been a sequence of articles in this line 
of research. For example, we refer to [4,9,18] for recovering numerically low-rank matrices, [11] for recovering 



740 Y. Li et al. / Appl. Comput. Harmon. Anal. 44 (2018) 737–758
an HSS matrices, and [10] for recovering H-matrices. This paper generalizes the work of [7] by considering 
complementary low-rank matrices coming from multidimensional problems.

1.3. Organization

The rest of this paper is organized as follows. Section 2 reviews the basic tools and describes the mul-
tidimensional butterfly factorization for kernel matrices that strictly satisfy the complementary low-rank 
property. We then extend it in two different ways to address the multidimensional Fourier integral operators. 
Section 3 introduces the polar butterfly factorization based on the polar butterfly algorithm proposed in 
[2]. Section 4 discusses the multiscale butterfly factorization based on the multiscale butterfly algorithm 
proposed in [8]. Finally, in Section 5, we conclude with some discussions.

2. Two-dimensional butterfly factorization

This section presents the two-dimensional butterfly factorization for a kernel matrix K = (K(x, ξ))x∈X,ξ∈Ω

that satisfies the complementary low-rank property in X × Ω with X and Ω given in (4) and (5).

2.1. Randomized low-rank factorization

The butterfly factorization relies heavily on randomized procedures for computing low-rank factorizations. 
For a matrix Z ∈ C

m×n, a rank-r approximation in 2-norm can be computed via the truncated singular 
value decomposition (SVD),

Z ≈ U0Σ0V
∗
0 , (6)

where U0 ∈ C
m×r and V0 ∈ C

n×r are unitary matrices, Σ0 ∈ R
r×r is a diagonal matrix with the largest r

singular values of Z in decreasing order.
Once Z ≈ U0Σ0V

∗
0 is available, we can also construct different low-rank factorizations of Z in three 

forms:

Z ≈ USV ∗, U = U0Σ0, S = Σ−1
0 , V ∗ = Σ0V

∗
0 ; (7)

Z ≈ UV ∗, U = U0Σ0, V ∗ = V ∗
0 ; (8)

Z ≈ UV ∗, U = U0, V ∗ = Σ0V
∗
0 . (9)

As we shall see, the butterfly factorization uses each of these three forms in different stages of the algorithm.
In [7], we showed that the rank-r SVD (6) can be constructed approximately via either random matrix–

vector multiplication [4,12] or random sampling [3,18,19]. In both cases, the key is to find accurate approx-
imate bases for both the column and row spaces of Z and approximate the largest r singular values using 
these bases.

SVD via random matrix–vector multiplication. This algorithm proceeds as follows:

• This algorithm first applies Z to a Gaussian random matrix C ∈ C
n×(r+k) and its adjoint Z∗ to a 

Gaussian random matrix R ∈ C
m×(r+k), where k is the oversampling constant.

• Second, computing the pivoted QR decompositions of ZC and Z∗R identifies unitary matrices Qcol ∈
C

m×r and Qrow ∈ C
n×r, which approximately span the column and row spaces of Z, respectively.
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• Next, the algorithms seeks a matrix M that satisfies

Z ≈ QcolMQ∗
row

by setting M = (R∗Qcol)†R∗ZC(Q∗
rowC)†, where (·)† denotes the pseudo inverse.

• Finally, combining the singular value decomposition M = UMΣMV ∗
M of the matrix M with the above 

approximation results in the desired approximate rank-r SVD

Z ≈ (QcolUM )ΣM (QrowVM )∗.

Suppose that the cost of applying Z and Z∗ to an arbitrary vector is CZ(m, n). Then the construction 
complexity of this procedure is O(CZ(m, n)r + max(m, n)r2). As we shall see later, when the black-box 
routines for rapidly applying K and K∗ are available, this procedure would be embedded into the algorithms 
for constructing the butterfly factorizations.

SVD via random sampling. The main steps and the intuition behind this algorithm are given below. The 
reader is referred to [3,18,19] for a detailed algorithm description.

• The first stage discovers the representative columns and rows progressively via computing multiple 
pivoted QR factorizations on randomly selected rows and columns of Z. The representative columns 
and rows are set to be empty initially. As the procedure processes, more and more columns (rows) 
are marked as representative and they are used in turn to discover new representative rows (columns). 
The procedure stops when the sets of the representative rows and columns stabilize. At this point, the 
representative columns (rows) approximately span the column (row) spaces of Z.

• Second, computing the pivoted QR decompositions of the representative columns and rows identifies 
unitary matrices Qcol ∈ C

m×r and Qrow ∈ C
n×r, which approximately span the column and row spaces 

of Z, respectively.
• Next, the algorithm seeks a matrix M that satisfies

Z ≈ QcolMQ∗
row.

This is done by restricting this equation to a random row set Irow and a random column set Icol and 
consider

Z(Irow, Icol) ≈ Qcol(Irow, :)MQrow(Icol, :)∗.

Here both Irow and Icol are of size O(r) and we require Irow and Icol to contain the set of representative 
rows and columns, respectively. From the above equation, we can solve M by setting

M = (Qcol(Irow, :))†Z(Irow, Icol)(Qrow(Icol, :)∗)†.

• Finally, combining the singular value decomposition M = UMΣMV ∗
M of the matrix M with the approx-

imation Z ≈ QcolMQ∗
row results in the desired approximate rank-r SVD

Z ≈ (QcolUM )ΣM (QrowVM )∗.

The construction complexity of this procedure is O(max(m, n)r2) in practice. When an arbitrary entry 
of Z can be evaluated in O(1) operations, this procedure is the method of choice for constructing low-rank 
factorizations.
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Fig. 1. An illustration of Z-order curve cross levels. The superscripts indicate the different levels while the subscripts indicate the 
index in the Z-ordering. The light gray lines show the ordering among the subdomains on the same level. Left: The root at level 0. 
Middle: At level 1, the domain A0

0 is divided into 2 × 2 subdomains A1
i with i ∈ I1 = {0, 1, 2, 3}. These 4 subdomains are ordered 

according to the Z-ordering. Right: At level 2, the domain A0
0 is divided into 4 × 4 subdomains A2

i with i ∈ I2 = {0, 1, . . . , 15}. 
These 16 subdomains are ordered similarly.

2.2. Notations and overall structure

We adopt the notation of the one-dimensional butterfly factorization introduced in [7] and adjust them 
to the two-dimensional case of this paper.

Recall that n is the number of grid points on each dimension and N = n2 is the total number of points. 
Suppose that TX and TΩ are complete quadtrees with L = logn levels and, without loss of generality, L is 
an even integer. For a fixed level � between 0 and L, the quadtree TX has 4� nodes at level �. By defining 
I� = {0, 1, . . . , 4� − 1}, we denote these nodes by A�

i with i ∈ I�. These 4� nodes at level � are further 
ordered according to a Z-order curve (or Morton order) as illustrated in Fig. 1. Based on this Z-ordering, 
the node A�

i at level � has four child nodes denoted by A�+1
4i+t with t = 0, . . . , 3. The nodes plotted in Fig. 1

for � = 1 (middle) and � = 2 (right) illustrate the relationship between the parent node and its child nodes. 
Similarly, in the quadtree TΩ, the nodes at the L − � the are denoted as BL−�

j for j ∈ IL−�.
For any level � between 0 and L, the kernel matrix K can be partitioned into O(N) submatrices 

KA�
i ,B

L−�
j

:= (K(x, ξ))x∈A�
i ,ξ∈BL−�

j
for i ∈ I� and j ∈ IL−�. For simplicity, we shall denote KA�

i ,B
L−�
j

as K�
i,j , where the superscript � denotes the level in the quadtree TX . Because of the complementary low-

rank property, every submatrix K�
i,j is numerically low-rank with the rank bounded by a uniform constant 

r independent of N .
The two-dimensional butterfly factorization consists of two stages. The first stage computes the factor-

izations

Kh
i,j ≈ Uh

i,jS
h
i,j

(
V h
j,i

)∗
for all i, j ∈ Ih at the middle level h = L/2, following the form (7). These factorizations can then be 
assembled into three sparse matrices Uh, Mh, and V h to give rise to a factorization for K:

K ≈ UhMh
(
V h

)∗
. (10)

This stage is referred to as the middle level factorization and is described in Section 2.3. In the second stage, 
we recursively factorize the left and right factors Uh and V h to obtain

Uh ≈ ULGL−1 · · ·Gh and
(
V h

)∗ ≈
(
Hh

)∗ · · · (HL−1)∗ (V L
)∗

,

where the matrices on the right hand side in each formula are sparse matrices with O(N) nonzero entries. 
Once they are ready, we assemble all factors together to produce a data-sparse approximate factorization 
for K:
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K ≈ ULGL−1 · · ·GhMh
(
Hh

)∗ · · · (HL−1)∗ (V L
)∗

, (11)

This stage is referred to as the recursive factorization and is discussed in Section 2.4.

2.3. Middle level factorization

Recall that we consider the construction of multidimensional butterfly factorization for two cases:

(i) A black-box routine for rapidly computing Kg and K∗g in O(N logN) operations is available;
(ii) A routine for evaluating any entry of K in O(1) operations is given.

In Case (i), we construct an approximate rank-r SVD of each Kh
i,j ∈ R

n×n with i, j ∈ Ih using the SVD 
via random matrix–vector multiplication (the first option in Section 2.1). This requires applying each Kh

i,j

to a Gaussian random matrix Cj ∈ C
n×(r+k) and its adjoint to a Gaussian random matrix Ri ∈ C

(r+k)×n. 
Here r is the desired numerical rank and k is the oversampling parameter. If a black box routine for 
applying the matrix K and its adjoint is available, this can be done in an efficient way as follows. For each 
j ∈ Ih, one constructs a zero-padded random matrix CP

j ∈ C
N×(r+k) by padding zero to Cj. From the 

relationship

KCP
j = K

( 0
Cj

0

)
=

⎛⎜⎝ Kh
0,jCj

...
Kh

4h−1,jCj

⎞⎟⎠ , (12)

it is clear that applying K to the matrix CP
j produces Kh

i,jCj for all i ∈ Ih. Similarly, we construct 
zero-padded random matrices RP

i ∈ C
N×(r+k) by padding zero to Ri and compute

K∗RP
i = K∗

( 0
Ri

0

)
=

⎛⎜⎜⎝
(
Kh

i,0
)∗

Ri

...(
Kh

i,4h−1

)∗
Ri

⎞⎟⎟⎠ (13)

by using the black-box routine for applying the adjoint of K. Finally, the approximated rank-r SVD of Kh
i,j

for each pair of i ∈ Ih and j ∈ Ih is computed from Kh
i,jCj and 

(
Kh

i,j

)∗
Ri.

In Case (ii), since an arbitrary entry of K can be evaluated in O(1) operations, the approximate rank-r
SVD of Kh

i,j is computed using the SVD via randomized sampling [3,19] (the second option in Section 2.1).
In both cases, once the approximate rank-r SVD is ready, we transform it into the form of (7):

Kh
i,j ≈ Uh

i,jS
h
i,j

(
V h
j,i

)∗
. (14)

Here the columns of the left and right factors Uh
i,j and V h

j,i are scaled by the singular values of Kh
i,j

such that Uh
i,j and V h

j,i keep track of the importance of the column and row bases for further factoriza-
tions.

After computing the rank-r factorization in (14) for all i and j in Ih, we assemble all left factors Uh
i,j

into a matrix Uh, all middle factors into a matrix Mh, and all right factors into a matrix V h so that

K ≈ UhMh(V h)∗. (15)
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Fig. 2. The middle level factorization of a complementary low-rank matrix K ≈ U2M2(V 2)∗ where N = n2 = 42 and r = 1. 
Grey blocks indicate nonzero blocks. U2 and V 2 are block-diagonal matrices with 4 blocks. The diagonal blocks of U2 and V 2 are 
assembled according to Equation (16) and (17) as indicated by gray rectangles. M2 is a 4 × 4 block matrix with each block M2

i,j

itself being an 4 × 4 block matrix containing diagonal weight matrix on the (j, i) block.

Here Uh is a block diagonal matrix of size N × rN with n diagonal blocks Uh
i of size n × rn:

Uh =

⎛⎜⎜⎜⎝
Uh

0
Uh

1
. . .

Uh
4h−1

⎞⎟⎟⎟⎠ ,

where each diagonal block Uh
i consists of the left factors Uh

i,j for all j as follows:

Uh
i =

(
Uh
i,0 Uh

i,1 · · · Uh
i,4h−1

)
∈ C

n×rn. (16)

Similarly, V h is a block diagonal matrix of size N × rN with n diagonal blocks V h
j of size n × rn, where 

each diagonal block V h
j consists of the right factors V h

j,i for all i as follows:

V h
j =

(
V h
j,0 V h

j,1 · · · V h
j,4h−1

)
∈ C

n×rn. (17)

The middle matrix Mh ∈ C
rN×rN is an n × n block matrix. The (i, j)-th block Mh

i,j ∈ C
rn×rn is itself 

an n × n block matrix. The only nonzero block of Mh
i,j is the (j, i)-th block, which is equal to the r × r

matrix Sh
i,j , and the other blocks of Mh

i,j are zero. We refer to Fig. 2 for a simple example of the middle 
level factorization when N = 42.

2.4. Recursive factorization

In this section, we shall discuss how to recursively factorize

U � ≈ U �+1G� (18)

and

(V �)∗ ≈ (H�)∗(V �+1)∗ (19)

for � = h, h +1, . . . , L −1. After these recursive factorizations, we can construct the two-dimensional butterfly 
factorization

K ≈ ULGL−1 · · ·GhMh
(
Hh

)∗ · · · (HL−1)∗ (V L
)∗ (20)

by substituting these recursive factorizations into (15).
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2.4.1. Recursive factorization of Uh

In the middle level factorization, we utilized the low-rank property of Kh
i,j, the kernel matrix restricted 

in the domain Ah
i × Bh

j ∈ TX × TΩ, to obtain Uh
i,j for i, j ∈ Ih. We shall now use the complementary 

low-rank property at level � = h + 1, i.e., the matrix Kh+1
i,j restricted in Ah+1

i × Bh−1
j ∈ TX × TΩ is 

numerical low-rank for i ∈ Ih+1 and j ∈ Ih−1. These factorizations of the column bases from level h
generate the column bases at level h + 1 through the following four steps: splitting, merging, truncating, 
and assembling.

Splitting. In the middle level factorization, we have constructed

Uh =

⎛⎜⎜⎜⎝
Uh

0
Uh

1
. . .

Uh
4h−1

⎞⎟⎟⎟⎠ with Uh
i =

(
Uh
i,0 Uh

i,1 · · · Uh
i,4h−1

)
∈ C

n×rn,

where each Uh
i,j ∈ C

n×r. Each node Ah
i in the quadtree TX on the level h has four child nodes on the level 

h + 1, denoted by {Ah+1
4i+t}t=0,1,2,3. According to this structure, one can split Uh

i,j into four parts in the row 
space,

Uh
i,j =

⎛⎜⎜⎜⎜⎜⎝
Uh,0
i,j

Uh,1
i,j

Uh,2
i,j

Uh,3
i,j

⎞⎟⎟⎟⎟⎟⎠ , (21)

where Uh,t
i,j approximately spans the column space of the submatrix of K restricted to Ah+1

4i+t ×Bh
j for each 

t = 0, . . . , 3. Combining this with the definition of Uh
i gives rise to

Uh
i =

(
Uh
i,0 Uh

i,1 · · · Uh
i,4h−1

)
=

⎛⎜⎜⎜⎜⎜⎝
Uh,0
i,0 Uh,0

i,1 . . . Uh,0
i,4h−1

Uh,1
i,0 Uh,1

i,1 . . . Uh,1
i,4h−1

Uh,2
i,0 Uh,2

i,1 . . . Uh,2
i,4h−1

Uh,3
i,0 Uh,3

i,1 . . . Uh,3
i,4h−1

⎞⎟⎟⎟⎟⎟⎠ =:

⎛⎜⎜⎜⎜⎝
Uh,0
i

Uh,1
i

Uh,2
i

Uh,3
i

⎞⎟⎟⎟⎟⎠ , (22)

where Uh,t
i approximately spans the column space of the matrix K restricted to Ah+1

4i+t × Ω.

Merging. The merging step merges adjacent matrices Uh,t
i,j in the column space to obtain low-rank matrices. 

For any i ∈ Ih and j ∈ Ih−1, the merged matrix(
Uh,t
i,4j+0 Uh,t

i,4j+1 Uh,t
i,4j+2 Uh,t

i,4j+3

)
∈ C

n/4×4r (23)

approximately spans the column space of Kh+1
4i+t,j corresponding to the domain Ah+1

4i+t × Bh−1
j . By the 

complementary low-rank property of the matrix K, we know Kh+1
4i+t,j is numerically low-rank. Hence, the 

matrix in (23) is also a numerically low-rank matrix. This is the merging step equivalent to moving from 
level h to level h − 1 in TΩ.

Truncating. The third step computes its rank-r approximation using the standard truncated SVD and 
putting it to the form of (8). For each i ∈ Ih and j ∈ Ih−1, the factorization
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Fig. 3. The recursive factorization of U2 in Fig. 2. Left matrix: U2 with each diagonal block partitioned into smaller blocks 
according to Equation (21) as indicated by black rectangles; Middle-left matrix: low-rank approximations of submatrices in U2

given by Equation (24); Middle right matrix: U3; Right matrix: G2.

(
Uh,t
i,4j+0 Uh,t

i,4j+1 Uh,t
i,4j+2 Uh,t

i,4j+3

)
≈ Uh+1

4i+t,jG
h
4i+t,j , (24)

defines Uh+1
4i+t,j ∈ C

n/4×r and Gh
4i+t,j ∈ C

r×4r.

Assembling In the final step, we construct the factorization Uh ≈ Uh+1Gh using (24). Since Ih+1 is the 
same as {4i + t}i∈Ih,t=0,1,2,3, one can arrange (24) for all i and j into a single formula as follows:

Uh ≈ Uh+1Gh =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Uh+1
0

. . .
Uh+1

3
Uh+1

4
. . .

Uh+1
7

. . .
Uh+1

4h+1−4
. . .

Uh+1
4h+1−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gh
0
...

Gh
3

Gh
4
...

Gh
7

. . .
Gh

4h+1−4
...

Gh
4h+1−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the blocks are given by

Uh+1
i =

(
Uh+1
i,0 Uh+1

i,1 · · · Uh+1
i,4h−1−1

)
and

Gh
i =

⎛⎜⎜⎜⎝
Gh

i,0
Gh

i,1
. . .

Gh
i,4h−1−1

⎞⎟⎟⎟⎠
for i ∈ Ih+1. Fig. 3 shows a toy example of the recursive factorization of Uh when N = 42, h = 2 and r = 1. 
Since there are O(1) nonzero entries in each Gh

i,j and O(4h+1 · 4h−1) = O(N) such matrices, there are only 
O(N) nonzero entries in Gh.

In a similar way, we can now factorize U � ≈ U �+1G� for h < � ≤ L − 1. As before, the key point is that 
the columns of
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(
U �,t
i,4j+0 U �,t

i,4j+1 U �,t
i,4j+2 U �,t

i,4j+3

)
(25)

approximately span the column space of K�+1
4i+t,j, which is of rank r numerically due to the complementary 

low-rank property. Computing its rank-r approximation via the standard truncated SVD results in a form 
of (8) (

U �,t
i,4j+0 U �,t

i,4j+1 U �,t
i,4j+2 U �,t

i,4j+3

)
≈ U �+1

4i+t,jG
�
4i+t,j (26)

for i ∈ I� and j ∈ IL−�−1. After assembling these factorizations together, we obtain

U � ≈ U �+1G� =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U �+1
0

. . .
U �+1

3
U �+1

4
. . .

U �+1
7

. . .
U �+1

4�+1−4
. . .

U �+1
4�+1−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G�
0
...
G�

3
G�

4
...
G�

7
. . .

G�
4�+1−4

...
G�

4�+1−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

U �+1
i =

(
U �+1
i,0 U �+1

i,1 · · · U �+1
i,4L−�−1−1

)
and

G�
i =

⎛⎜⎜⎜⎝
G�

i,0
G�

i,1
. . .

G�
i,4L−�−1−1

⎞⎟⎟⎟⎠
for i ∈ I�+1.

After the L − h step of recursive factorizations U � ≈ U �+1G� for � = h, h + 1, . . . , L − 1, the recursive 
factorization of Uh takes the following form:

Uh ≈ ULGL−1 · · ·Gh. (27)

Similarly to the analysis of Gh, it is also easy to check that there are only O(N) nonzero entries in each G�

in (27). As to the first factor UL, it has O(N) nonzero entries since there are O(N) diagonal blocks in UL

and each block contains O(1) entries.

2.4.2. Recursive factorization of V h

The recursive factorization of V � is similar to that of U � for � = h, h + 1, . . . , L − 1. At each level �, we 
benefit from the fact that (

V �,t V �,t V �,t V �,t
)

j,4i+0 j,4i+1 j,4i+2 j,4i+3
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approximately spans the row space of KL−�−1
i,4j+t and hence is numerically low-rank for j ∈ IL−� and i ∈ I�−1. 

Applying the same procedure in Section 2.4.1 to V h leads to

V h ≈ V LHL−1 · · ·Hh. (28)

2.5. Complexity analysis

By combining the results of the middle level factorization in (15) and the recursive factorizations in (27)
and (28), we obtain the final butterfly factorization

K ≈ ULGL−1 · · ·GhMh
(
Hh

)∗ · · · (HL−1)∗ (V L
)∗

, (29)

each factor of which contains O(N) nonzero entries. We refer to Fig. 4 for an illustration of the butterfly 
factorization of K when N = 162.

The complexity of constructing the butterfly factorization comes from two parts: the middle level factor-
ization and the recursive factorization. For the middle level factorization, the construction cost is different 
depending on which of the two cases mentioned in Section 2.3 is under consideration, since they use different 
approaches in constructing rank-r SVDs at the middle level.

• In Case (i), the dominant cost is to apply K and K∗ to N1/2 Gaussian random matrices of size N ×
O(1). Assuming that the given black-box routine for applying K and K∗ to a vector takes O(CK(N))
operations, the total operation complexity is O(CK(N)N1/2).

• In Case (ii), we apply the SVD procedure with random sampling to N submatrices of size N1/2 ×N1/2. 
Since the operation complexity for each submatrix is O(N1/2), the overall complexity is O(N3/2).

In the recursive factorization stage, most of the work comes from factorizing Uh and V h. There are 
O(logN) stages appeared in the factorization of Uh. At the � stage, the matrix U � to be factorized consists 
of 4� diagonal blocks. There are O(N) factorizations and each factorization takes O(N/4�) operations. 
Hence, the operation complexity to factorize U � is O(N2/4�). Summing up all the operations in each step 
yields the overall operation complexity for recursively factorizing Uh:

L−1∑
�=h

O(N2/4�) = O(N3/2). (30)

The peak of the memory usage of the butterfly factorization is due to the middle level factorization where 
we need to store the results of O(N) factorizations of size O(N1/2). Hence, the memory complexity for the 
two-dimensional butterfly factorization is O(N3/2). For Case (ii), one can actually do better by following 
the same argument in [7]. One can interleave the order of generation and recursive factorization of Uh

i,j

and V h
j,i. By factorizing Uh

i,j and V h
j,i individually instead of formulating (15), the memory complexity in 

Case (ii) can be reduced to O(N logN).
The cost of applying the butterfly factorization is equal to the number of nonzero entries in the final 

factorization, which is O(N logN). Table 1 summarizes the complexity analysis for the two-dimensional 
butterfly factorization.

2.6. Extensions

We have introduced the two-dimensional butterfly factorization for a complementary low-rank kernel 
matrix K in the entire domain X × Ω. Although we have assumed the uniform grid in (4) and (5), the 
butterfly factorization extends naturally to more general settings.
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Fig. 4. A full butterfly factorization for a two dimensional problem of size 162 and fixed rank r = 1. The above figure visualizes the 
matrices in K ≈ U3M3(V 3)∗ ≈ U4G3M3(H3)∗(V 4)∗ ≈ U5G4G3M3(H3)∗(H4)∗(V 5)∗.

In the case with non-uniform point sets X or Ω, one can still construct a butterfly factorization for 
K following the same procedure. More specifically, we still construct two trees TX and TΩ adaptively via 
hierarchically partitioning the square domains covering X and Ω. For non-uniform point sets X and Ω, the 
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Table 1
The time and memory complexity of the two-dimensional butterfly factorization. Here CK(N) is the complexity of applying the 
matrices K and K∗ to a vector. For most butterfly algorithms, CK(N) = O(N logN).

SVD via rand. matvec SVD via rand. sampling

Factorization complexity
Middle level factorization O(CK(N)N1/2) O(N3/2)

Recursive factorization O(N3/2)

Total O(CK(N)N1/2) O(N3/2)

Memory complexity O(N3/2) O(N logN)
Application complexity O(N logN)

numbers of points in A�
i and BL−�

j are different. If a node does not contain any point inside it, it is simply 
discarded from the quadtree.

The complexity analysis summarized in Table 1 remains valid in the case of non-uniform point sets X
and Ω. On each level � = h, . . . , L of the butterfly factorization, although the sizes of low-rank submatrices 
are different, the total number of submatrices and the numerical rank remain the same. Hence, the total 
operation and memory complexity remains the same as summarized in Table 1.

3. Polar butterfly factorization

In Section 2, we have introduced a two-dimensional butterfly factorization for a complementary low-rank 
kernel matrix K in the entire domain X×Ω. In this section, we will introduce a polar butterfly factorization 
to deal with the kernel function K(x, ξ) = e2πıΦ(x,ξ). Such a kernel matrix has a singularity at ξ = 0 and 
the approach taken here follows the polar butterfly algorithm proposed in [2].

3.1. Polar butterfly algorithm

The multidimensional Fourier integral operator (FIO) is defined as

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ), x ∈ X, (31)

where the phase function Φ(x, ξ) is assumed to be real-analytic in (x, ξ) for ξ �= 0, and is homogeneous of 
degree 1 in ξ, namely, Φ(x, λξ) = λΦ(x, ξ) for all λ > 0. Here the grids X and Ω are the same as those in 
(4) and (5).

As the phase function Φ(x, ξ) is singular at ξ = 0, the numerical rank of the kernel e2πıΦ(x,ξ) in a domain 
near or containing ξ = 0 is typically large. Hence, in general K(x, ξ) = e2πıΦ(x,ξ) does not satisfy the 
complementary low-rank property over the domain X ×Ω with quadtree structures TX and TΩ. To fix this 
problem, the polar butterfly algorithm introduces a scaled polar transformation on Ω:

ξ = (ξ1, ξ2) =
√

2
2 np1 · (cos 2πp2, sin 2πp2), (32)

for ξ ∈ Ω and p = (p1, p2) ∈ [0, 1]2. In the rest of this section, we use p to denote a point in the polar 
coordinate and P for the set of all points p transformed from ξ ∈ Ω. This transformation gives rise to a new 
phase function Ψ(x, p) in variables x and p satisfying

Ψ(x, p) = 1
n

Φ(x, ξ(p)) =
√

2
2 Φ (x, (cos 2πp2, sin 2πp2)) · p1, (33)

where the last equality comes from the fact that Φ(x, ξ) is homogeneous of degree 1 in ξ. This new phase 
function Ψ(x, p) is smooth in the entire domain X × P and the FIO in (31) takes the new form
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u(x) =
∑
p∈P

e2πınΨ(x,p)g(p), x ∈ X. (34)

The transformation (32) ensures that X × P ⊂ [0, 1]2 × [0, 1]2. By partitioning [0, 1]2 recursively, we can 
construct two quadtrees TX and TP of depth L = O(logn) for X and P , respectively. The following theorem 
is a rephrased version of Theorem 3.1 in [2] that shows analytically the complementary low-rank property 
of e2πınΨ(x,p) in the (X, P ) domain.

Theorem 3.1. Suppose A is a node in TX at level � and B is a node in TP at level L − �. Given an 
FIO kernel function e2πınΨ(x,p) with a real-analytic phase function in the joint variables x and p, there 
exist ε0 > 0 and n0 > 0 such that for any positive ε ≤ ε0 and n ≥ n0, there exist rε pairs of functions 
{αA,B

t (x), βA,B
t (p)}1≤t≤rε satisfying that

∣∣∣∣∣e2πınΨ(x,p) −
rε∑
t=1

αA,B
t (x)βA,B

t (p)

∣∣∣∣∣ ≤ ε,

for x ∈ A and p ∈ B with rε � log4(1/ε).

Based on Theorem 3.1, the polar butterfly algorithm traverses upward in TΩ and downward in TX

simultaneously and visits the low-rank submatrices KA,B = {K(xi, ξj)}xi∈A,ξj∈B for pairs (A, B) in TX×TP . 
The polar butterfly algorithm is asymptotically very efficient: for a given input vector g(p) for p ∈ P , it 
evaluates (34) in O(N logN) steps using O(N) memory space. We refer the readers to [2] for a detailed 
description of this algorithm.

3.2. Factorization algorithm

Combining the polar butterfly algorithm with the butterfly factorization outlined in Section 2 gives rise 
to the following polar butterfly factorization.

1. Preliminary. Take the polar transformation of each point in Ω and reformulate the problem

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ), x ∈ X, (35)

into

u(x) =
∑
p∈P

e2πınΨ(x,p)g(p), x ∈ X. (36)

2. Factorization. Apply the two-dimensional butterfly factorization to the kernel e2πınΨ(x,p) defined on a 
non-uniform point set in X × P . The corresponding kernel matrix is approximated as

K ≈ ULGL−1 · · ·GhMh
(
Hh

)∗ · · · (HL−1)∗ (V L
)∗

. (37)

Since the polar butterfly factorization essentially applies the original butterfly factorization to non-
uniform point sets X and P , it has the same complexity as summarized in Table 1. Depending on the SVD 
procedure employed in the middle level factorization, we refer to it either as PBF-m (when SVD via random 
matrix–vector multiplication is used) or as PBF-s (when SVD via random sampling is used).
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3.3. Numerical results

This section presents two numerical examples to demonstrate the efficiency of the polar butterfly factor-
ization. The numerical results were obtained in MATLAB on a server with 2.40 GHz CPU and 1.5 TB of 
memory.

In this section, we denote by {up(x)}x∈X the results obtained via the PBF. The relative error of the PBF 
is estimated as follows, by comparing up(x) with the exact values u(x):

ep =

√ ∑
x∈S |up(x) − u(x)|2∑

x∈S |u(x)|2 , (38)

where S is a set of 256 randomly sampled points from X.

Example 1. The first example is a two-dimensional generalized Radon transform that is an FIO defined as 
follows:

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ), x ∈ X, (39)

with the phase function given by

Φ(x, ξ) = x · ξ +
√

c21(x)ξ2
1 + c22(x)ξ2

2 ,

c1(x) = (2 + sin(2πx1) sin(2πx2))/16, (40)

c2(x) = (2 + cos(2πx1) cos(2πx2))/16,

where X and Ω are defined in (4) and (5). The computation in (39) approximately integrates over spatially 
varying ellipses, for which c1(x) and c2(x) are the axis lengths of the ellipse centered at the point x ∈ X. 
The corresponding matrix form of (39) is simply

u = Kg, K = (e2πıΦ(x,ξ))x∈X,ξ∈Ω. (41)

As e2πıΦ(x,ξ) is known explicitly, we are able to use the PBF-s (i.e., the one with random sampling in the 
middle level factorization) to approximate the kernel matrix K given by e2πıΦ(x,ξ). After the construction 
of the butterfly factorization, the summation in (39) can be evaluated efficiently by applying these sparse 
factors to g(ξ). Table 2 summarizes the results of this example.

Example 2. The second example evaluates the composition of two FIOs with the same phase function Φ(x, ξ). 
This is given explicitly by

u(x) =
∑
η∈Ω

e2πıΦ(x,η)
∑
y∈X

e−2πıy·η
∑
ξ∈Ω

e2πıΦ(y,ξ)g(ξ), x ∈ X, (42)

where the phase function is given in (40). The corresponding matrix representation is

u = KFKg, (43)

where K is the matrix given in (41) and F is the matrix representation of the discrete Fourier transform. 
Under relatively mild assumptions (see [5] for details), the composition of two FIOs is again an FIO. Hence, 
the kernel matrix
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Table 2
Numerical results provided by the PBF with randomized sampling algorithm for 
the FIO in (39). n is the number of grid points in each dimension; N = n2 is the 
size of the kernel matrix; r is the max rank used in the low-rank approximation; 
Tf,p is the factorization time of the PBF; Tp is the application time of the PBF. 
The last column shows the speedup factor compared to the direct evaluation.

n, r εp Tf,p (min) Tp (s) Speedup
64, 6 2.46e−02 6.51e−01 2.37e−02 1.54e+02

128, 6 7.55e−03 9.84e+00 2.30e−01 1.67e+02
256, 6 5.10e−02 2.73e+01 6.23e−01 7.55e+02
512, 6 1.46e−02 4.00e+02 7.88e+00 4.15e+02

64, 14 7.93e−04 7.34e−01 5.98e−02 8.72e+01
128, 14 7.28e−04 1.17e+01 7.15e−01 4.28e+01
256, 14 2.15e−03 3.93e+01 1.46e+00 2.86e+02
512, 14 1.25e−03 5.63e+02 1.05e+01 3.35e+02

64, 22 6.96e−05 7.40e−01 8.24e−02 4.51e+01
128, 22 7.23e−05 1.16e+01 1.04e+00 3.69e+01
256, 22 2.44e−04 5.14e+01 5.94e+00 7.74e+01

Table 3
Numerical results provided by the PBF with randomized SVD algorithm for the 
composition of FIOs given in (43).

n, r εp Tf,p (min) Tp (s) Speedup
64, 12 3.84e−02 6.22e+00 2.18e−02 3.34e+02

128, 12 1.31e−02 3.86e+02 1.80e−01 4.25e+02

64, 20 2.24e−03 8.58e+00 3.04e−02 2.39e+02
128, 20 2.23e−03 3.68e+02 3.60e−01 2.13e+02

K̃ := KFK (44)

of the product can be approximated by the butterfly factorization. Notice that the kernel function of K̃
defined by (44) is not given explicitly. However, (44) provides fast algorithms for applying K̃ and its adjoint 
through the fast algorithms for K and F . For example, the butterfly factorization of Example 1 enables the 
efficient application of K and K∗ in O(N logN) operations. Applying of F and F ∗ can be done by the fast 
Fourier transform in O(N logN) operations. Therefore, we can apply the PBF-m (i.e., the one with random 
matrix–vector multiplication) to factorize the kernel K̃ = KFK. Table 3 summarizes the numerical results 
of this example, the composing of two FIOs.

Discussion. The numerical results in Tables 2 and 3 support the asymptotic complexity analysis. When 
we fix r and let n grow, the actually running time fluctuates around the asymptotic scaling since the 
implementation of the algorithms differ slightly depending on whether L is odd or even. However, the 
overall trend matches well with the O(N3/2) construction cost and the O(N logN) application cost. For a 
fixed n, one can improve the accuracy by increasing the truncation rank r. From the tables, one observes 
that the relative error decreases by a factor of 10 when we increase the rank r by 8 every time. In the 
second example, since the composition of two FIOs typically has higher ranks compared to a single FIO, 
the numerical rank r used for the composition is larger than that for a single FIO in order to maintain 
comparable accuracy.

4. Multiscale butterfly factorization

In this section, we discuss yet another approach for constructing butterfly factorization for the kernel 
K(x, ξ) = e2πıΦ(x,ξ) with singularity at ξ = 0. This is based on the multiscale butterfly algorithm introduced 
in [8].
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Fig. 5. This figure shows the frequency domain decomposition of Ω. Each subdomain Ωt, t = 0, 1, . . . , log2 n − s, is a corona 
subdomain and ΩC is a small square subdomain covering the origin.

4.1. Multiscale butterfly algorithm

The key idea of the multiscale butterfly algorithm [8] is to hierarchically partition the domain Ω into 
subdomains excluding the singular point ξ = 0. This multiscale partition is illustrated in Fig. 5 with

Ωt =
{

(ξ1, ξ2) : n

2t+2 < max(|ξ1|, |ξ2|) ≤
n

2t+1

}
∩ Ω, (45)

for t = 0, 1, . . . , log2 n −s, s is a small constant, and ΩC = Ω \∪tΩt. Equation (45) is a corona decomposition 
of Ω, where each Ωt is a corona subdomain and ΩC is a square subdomain at the center containing O(1)
points.

The FIO kernel e2πıΦ(x,ξ) satisfies the complementary low-rank property when it is restricted in each 
subdomain X × Ωt. This observation is supported by the following theorem rephrased from Theorem 3.1 
in [8]. Here the notation dist(B, 0) = minξ∈B ‖ξ − 0‖ is the distance between the square B and the origin 
ξ = 0 in Ω.

Theorem 4.1. Given an FIO kernel function e2πıΦ(x,ξ) with a real-analytic phase function Φ(x, ξ) for x
and ξ away from ξ = 0, there exist a constant n0 > 0 and a small constant ε0 such that the following 
statement holds. Let A and B be two squares in X and Ω with sidelength wA and wB, respectively. Suppose 
wAwB ≤ 1 and dist(B, 0) ≥ n

4 . For any positive ε ≤ ε0 and n ≥ n0, there exist rε pairs of functions 
{αA,B

t (x), βA,B
t (p)}1≤t≤rε satisfying that∣∣∣∣∣e2πıΦ(x,ξ) −

rε∑
t=1

αA,B
t (x)βA,B

t (ξ)

∣∣∣∣∣ ≤ ε,

for x ∈ A and ξ ∈ B with rε � log4(1/ε).

According to the low-rank property in Theorem 4.1, the multiscale butterfly algorithm rewrites (31) as 
a multiscale summation,

u(x) = uC(x) +
log2 n−s∑

t=0
ut(x) =

∑
ξ∈ΩC

e2πıΦ(x,ξ)g(ξ) +
log2 n−s∑

t=0

∑
ξ∈Ωt

e2πıΦ(x,ξ)g(ξ). (46)

For each t, the multiscale butterfly factorization algorithm evaluates ut(x) =
∑

ξ∈Ωt
e2πıΦ(x,ξ)g(ξ) with 

a standard butterfly algorithm such as the one that relies on the oscillatory Lagrange interpolation on 
Chebyshev grid (see [2]). The final piece uC(x) is evaluated directly in O(N) operations. As a result, the 
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multiscale butterfly algorithm asymptotically takes O(N logN) operations to evaluate (46) for a given input 
function g(ξ) for ξ ∈ Ω. We refer the reader to [8] for the detailed exposition.

4.2. Factorization algorithm

Combining the multiscale butterfly algorithm with the butterfly factorization outlined in Section 2 gives 
rise to the following multiscale butterfly factorization:

1. Preliminary. Decompose domain Ω into subdomains as in (45). Reformulate the problem into a multi-
scale summation according to (46):

K = KCRC +
log2 n−s∑

t=0
KtRt. (47)

Here KC and Kt are kernel matrices corresponding to X×ΩC and X×Ωt. RC and Rt are the restriction 
operators to the domains ΩC and Ωt respectively.

2. Factorization. Recall that L = log2 n. For each t = 0, 1, . . . , L − s, apply the two-dimensional butterfly 
factorization on K(x, ξ) = e2πıΦ(x,ξ) restricted in X×Ωt. Let Ω̃t be the smallest square that contains Ωt. 
Define Lt = 2�(L − t)/2, where �· is the largest integer less than or equal to a given number. We 
construct two quadtrees TX and TΩ̃t

of depth Lj with X and Ω̃t being the roots, respectively. Applying 
the two-dimensional butterfly factorization using the quadtrees TX and TΩ̃t

gives the t-th butterfly 
factorization:

Kt ≈ ULt
t GLt−1

t · · ·G
Lt
2

t M
Lt
2

t

(
H

Lt
2

t

)∗
· · ·

(
HLt−1

t

)∗ (
V Lt
t

)∗
.

Note that 1/4 of the tree TΩ̃t
is empty and we can simply ignore the computation for these parts. This 

is a special case of non-uniform point sets. Once we have computed all butterfly factorizations, the 
multiscale summation in (47) is approximated by

K ≈ KCRC +
L−s∑
t=0

ULt
t GLt−1

t · · ·M
Lt
2

t · · ·
(
HLt−1

t

)∗ (
V Lt
t

)∗
Rt. (48)

The idea of the hierarchical decomposition of Ω not only avoids the singularity of K(x, ξ) at ξ = 0, 
but also maintains the efficiency of the butterfly factorization. The butterfly factorization for the kernel 
matrix restricted in X × Ωt is a special case of non-uniform butterfly factorization in which the center 
of Ωt contains no point. Since the number of points in Ωt is decreasing exponentially in t, the operation 
and memory complexity of the multiscale butterfly factorization is dominated by the butterfly factorization 
of Kt for t = 0, which is bounded by the complexity summarized in Table 1. Depending on the SVD 
procedure in the middle level factorization, we refer this factorization either as MBF-m (when SVD via 
random matrix–vector multiplication is used) or as MBF-s (when SVD via random sampling is used).

4.3. Numerical results

This section presents two numerical examples to demonstrate the efficiency of the MBF as well. The 
numerical results are obtained in the same environment as the one used in Section 3.3. Here we denote by 
{um(x), x ∈ X} the results obtained via the MBF. The relative error is estimated by
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Table 4
Numerical results provided by the MBF with the randomized sampling algo-
rithm for the FIO given in (50). n is the number of grid points in each dimension; 
N = n2 is the size of the kernel matrix; r is the max rank used in low-rank ap-
proximation; Tf,m is the factorization time of the MBF; Tm is the application 
time of the MBF. The last column shows the speedup factor compared to the 
direct evaluation.

n, r εm Tf,m (min) Tm (s) Speedup
64, 12 1.58e−02 4.48e−01 4.09e−02 1.13e+02

128, 12 1.47e−02 5.64e+00 1.93e−01 2.02e+02
256, 12 2.13e−02 2.16e+01 5.51e−01 9.26e+02
512, 12 1.97e−02 2.97e+02 5.07e+00 6.45e+02

64, 20 5.51e−03 4.74e−01 6.11e−02 6.17e+01
128, 20 4.27e−03 5.95e+00 5.01e−01 7.63e+01
256, 20 1.68e−03 3.03e+01 2.51e+00 1.79e+02
512, 20 2.02e−03 4.57e+02 1.14e+01 2.98e+02

64, 28 7.42e−05 7.18e−01 3.92e−02 6.23e+01
128, 28 8.46e−05 1.23e+01 5.42e−01 7.43e+01
256, 28 5.63e−04 6.73e+01 3.23e+00 1.43e+02
512, 28 4.18e−04 7.20e+02 1.66e+01 2.14e+02

em =

√ ∑
x∈S |um(x) − u(x)|2∑

x∈S |u(x)|2 , (49)

where S is a set of 256 randomly sampled from X. In the multiscale decomposition of Ω, we recursively 
divide Ω until the center part is of size 16 by 16.

Example 1. We revisit the first example in Section 3.3 to illustrate the performance of the MBF,

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ), x ∈ X, (50)

with a kernel Φ(x, ξ) given by

Φ(x, ξ) = x · ξ +
√

c21(x)ξ2
1 + c22(x)ξ2

2 ,

c1(x) = (2 + sin(2πx1) sin(2πx2))/16,

c2(x) = (2 + cos(2πx1) cos(2πx2))/16,

(51)

where X and Ω are defined in (4) and (5). Table 4 summarizes the results of this example obtained by 
applying the MBF-s.

Example 2. Here we revisit the second example in Section 3.3 to illustrate the performance of the MBF. 
Recall that the matrix representation of a composition of two FIOs is

u = K̃g = KFKg, (52)

and that there are fast algorithms to apply K, F and their adjoints. Hence, we can apply the MBF-m (i.e., 
with the random matrix–vector multiplication) to factorize K̃ into the form of (48). Table 5 summarizes 
the results.

Discussion. The results in Tables 4 and 5 agree with the O(N3/2 logN) complexity analysis of the construc-
tion algorithm. As we double the problem size n, the factorization time increases by a factor 9 on average. 
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Table 5
MBF numerical results for the composition of FIOs given in (52).

n, r εm Tf,m (min) Tm (s) Speedup
64, 16 1.86e−02 4.05e+00 1.95e−02 4.23e+02

128, 16 1.76e−02 1.27e+02 1.86e−01 4.17e+02

64, 24 4.43e−03 5.37e+00 2.52e−02 3.27e+02
128, 24 3.02e−03 1.79e+02 2.29e−01 3.40e+02

The actual application time in these numerical examples matches the theoretical operation complexity of 
O(N logN). In Table 4, the relative error decreases by a factor of 10 when the increment of the rank r is 6. 
In Table 5, the relative error decreases by a factor of 6 when the increment of the rank r is 8.

5. Conclusion

We have introduced three multidimensional butterfly factorizations as data-sparse representations of a 
class of kernel matrices coming from multidimensional integral transforms. When the integral kernel K(x, ξ)
satisfies the complementary low-rank property in the entire domain, the butterfly factorization introduced 
in Section 2 represents an N×N kernel matrix as a product of O(logN) sparse matrices. In the FIO case for 
which the kernel K(x, ξ) is singular at ξ = 0, we propose two extensions: (1) the polar butterfly factorization 
that incorporates a polar coordinate transformation to remove the singularity and (2) the multiscale butterfly 
factorization that relies on a hierarchical partitioning in the Ω domain. For both extensions, the resulting 
butterfly factorization takes O(N logN) storage space and O(N logN) steps for computing matrix–vector 
multiplication as before.

The butterfly factorization for higher dimensions (d > 2) can be constructed in a similar way. For the 
polar butterfly factorization, one simply applies a d-dimensional spherical transformation to the frequency 
domain Ω. For the multiscale butterfly factorization, one can again decompose the frequency domain as a 
union of dyadic shells centered round the singularity at ξ = 0.
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