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HIERARCHICAL TUCKER LOW-RANK MATRICES:
CONSTRUCTION AND MATRIX-VECTOR MULTIPLICATION*

YINGZHOU LIt AND JINGYU LIU*

Abstract. In this paper, a hierarchical Tucker low-rank (HTLR) matrix is proposed to approxi-
mate non-oscillatory kernel functions in linear complexity. The HTLR matrix is based on the hierar-
chical matrix, with the low-rank blocks replaced by Tucker low-rank blocks. Using high-dimensional
interpolation as well as tensor contractions, algorithms for the construction and matrix-vector multi-
plication of HTLR matrices are proposed admitting linear and quasi-linear complexities respectively.
Numerical experiments demonstrate that the HTLR matrix performs well in both memory and run-
time. Furthermore, the HTLR matrix can also be applied on quasi-uniform grids in addition to
uniform grids, enhancing its versatility.
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1. Introduction. This paper considers the integral equation (IE) taking the
form

(1.1) o@yu(e) + [ Fayjulw)y = f@). e

where Q = [0,1]? is the unit box in R%. Here the kernel function k(zx,y) as well as
the function a(x) in (1.1) are given. In some cases, the function u(x) is known, and
we would like to evaluate the integral equation (1.1) to obtain f(x). This is known as
the forward evaluation or the application. In other cases, the function f(x) is known
and u(x) is unknown. We would like to solve the integral equation (1.1) to obtain
u(x). This is known as the backward evaluation or the inversion. Both forward and
backward evaluations are of great importance in practice.

Discretizing (1.1) using typical approaches leads to a dense linear system

(1.2) Au = f,

where A € RV*N i a dense matrix and N is the number of discretization points.
For instance, the Nystrém scheme of (1.1) on a uniform grid with n points in each
direction yields the following linear system of size N = n¢:

N
(1.3) a(x;)u; +2Ki7jhduj = f(x;), i=1,...,N,

Jj=1

in which u; ~ u(x;) approximates the value on the grid points. The matrix K can
be viewed as a kernel matrix, with the exception of a modification on the diagonal.
Its entries are defined as follows:

k(miamj)7 ]#%

T U ki y)dy/nd, =,
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where the integral is computed numerically. The product K ; h¢ is the approximated
integral of k(x;,-) on a square domain 2; with width h = 1/n and center x;. The
discretization (1.3) can also be regarded as a collocation method using piecewise-
constant basis functions whose supports are {Q;}, except that the off-diagonal entries
use an approximation of the integral.

1.1. Related Work. Typically, dense direct methods for solving (1.2) such as
the LU factorization take the &(N?) time complexity and ¢/(N?) storage complexity,
which becomes prohibitive as N increases to moderately large values.

Fast algorithms have been designed to reduce both the time and storage complex-
ity in addressing (1.2). The key insight is the observation that off-diagonal submatrices
of A in (1.3) are numerically low-rank if the kernel function & is smooth and not highly
oscillatory away from the diagonal. Such kernel functions are commonly encountered
in practice, including the Green’s function for elliptic PDEs and low frequency wave
equations, as well as Gaussian kernels. This low-rank property brings the possibility to
enhance both storage efficiency and computational performance for the matrix. This
idea can be traced back to the Barnes—Hut algorithm [3] (also known as the tree-code)
and fast multipole methods (FMM) [8, 15, 21, 49], which accelerate the matrix-vector
multiplication for kernel matrices. Besides, Hackbusch and his collaborators have in-
troduced hierarchical matrices [22, 25] (also known as H-matrices and H2-matrices).
These matrices achieve quasi-linear or linear complexity for most matrix algebraic op-
erations including matrix-vector multiplication, matrix-matrix multiplication, matrix
LU factorization, etc [6, 22, 23, 24, 25, 35]. Notably, H-matrices and H2-matrices can
be viewed as the algebraic version of the Barnes—Hut algorithm and FMM respectively.

Hierarchical block-separable (HBS) matrices (also referred to as hierarchical semi-
separable, HSS, matrices) [40] represent another class of fast algorithms that accelerate
kernel matrix operations. These matrices are closely related to H2-matrix under weak
admissibility condition. Various HBS matrix factorization algorithms are proposed to
achieve quasi-linear or linear complexity for matrix-vector multiplication and solving
linear systems [9, 12, 17, 19, 48]. Another family of fast algorithms factorizes the
matrix A as a product of block sparse lower and upper triangular matrices, where each
block could be applied or inverted in & (1) complexity. Algorithms in this category
include recursive skeletonization factorization [31, 41] and hierarchical interpolative
factorization [32]. Two key techniques employed for algorithms in this family are the
interpolative decomposition [10] and the proxy surface [39]. When the kernel function
is smooth without singularity, such as in the case of Gaussian kernels, the low-rank
approximation can be applied more aggressively, extending to those diagonal blocks
as well [46, 47].

Though aforementioned fast algorithms achieve low complexity with respect to
the matrix size, they still face the challgenge of the curse of dimensionality (CoD).
When the problem dimension d increases, the prefactor in the complexity with re-
spect to the size of each direction scales exponentially with d. To address this issue,
tensor low-rank decompositions are commonly used techniques. In [34], the authors
provide a comprehensive introduction to tensor decompositions such as the CANDE-
COMP/PARAFAC (CP) decomposition and the Tucker decomposition, both of which
can be viewed as a generalization of the matrix singular value decomposition (SVD).
Tensor decompositions could be computed by various numerical algorithms, includ-
ing high-order SVD (HOSVD) [13], higher-order orthogonal iteration (HOOI) [14],
sequentially truncated higher order SVD (STHOSVD) [45], and their randomized ver-
sions [30, 42]. Besides, tensor train, tensor ring, and tensor network are another
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family of tensor decompositions widely used in practice, especially in computational
physics and chemistry [11, 43].

Blending the structure of hierarchical decomposition and tensor decomposition
has the potential to yield linear or quasi-linear fast algorithms with improved pref-
actors. Hierarchical Kronecker tensor-product (HKT) approximation [16, 26, 27,
28, 29] combines these two techniques, resulting om a quasi-linear representation
of some high-dimensional integral and elliptic operators. Recently, tensor butterfly
algorithm [33] has been proposed to represent high-dimensional oscillatory integral
operators, which combines the butterfly factorization [36, 37, 38] and Tucker decom-
position, further enhancing computational efficiency in high-dimensional contexts.

1.2. Contributions. In this paper, a hierarchical Tucker low-rank (HTLR) ma-
trices is defined by replacing the low-rank blocks in an H-matrix with Tucker low-
rank (TLR) matrices. The Tucker decomposition enables TLR matrices to mitigate
the CoD compared to conventional low-rank matrices, resulting in lower memory re-
quirements and faster computational runtime. Our analysis demonstrates that only
O(N) storage is needed to store an HTLR matrix of size N. Linear construction
and quasi-linear application algorithms are proposed for HTLR matrices. In the con-
struction algorithm, the TLR matrices are generated via multidimensional interpola-
tions. A theoretical error bound is established for a specific class of kernel functions.
The application algorithm uses tensor contractions for matrix-vector multiplication,
achieving an improvement in the prefactor of the dominant complexity compared to
H-matrices. While the HTLR matrix is first introduced and discussed in the con-
text of problems with a uniform grid discretization, we also present its application
on a quasi-uniform grid discretization. Numerical experiments are conducted across
various settings. The results not only support our complexity analysis but also offer
compelling evidence for the efficiency of HTLR matrices.

1.3. Organization. The rest of the paper is organized as follows. Section 2
introduces the notations used throughout the paper and provides a brief review of H-
matrices. In Section 3, HTLR matrices are introduced for problems on uniform grids.
We demonstrate that HTLR matrices only require linear storage complexity. The
application of HTLR matrices on a quasi-uniform grid is also discussed there. The
construction and application algorithms of HTLR matrices, as well as their complexity
analysis, are described in detail in Section 4. Section 5 presents numerical results for
two-dimensional and three-dimensional problems to demonstrate the performance of
HTLR matrices. Finally, Section 6 concludes the paper with a discussion on future
work.

2. Preliminaries.

2.1. Notations. For a positive integer N, the index set {1,..., N} is denoted
by [N]. The notation | - | denotes either the number of elements in a set or the area
of a domain. Vectors are denoted by boldface lowercase letters, e.g., a, matrices are
denoted by boldface capital letters, e.g., A, and tensors (with order greater than 2)
are denoted by boldface Euler script letters, e.g., A. We use MATLAB notations
throughout the paper. For example, the i-th entry of a vector is denoted by a; or
a(i). The submatrix of a matrix A corresponding to row and column index sets 7
and o are denoted by A, , or A(7,0). A colon is used to indicate all entries of a
dimension. For example, the j-th column of a matrix A is denoted by A. ; or A(:, 7).
The conjugate transpose of a matrix A is denoted by A*. A matrix U is orthonormal
if its columns form an orthonormal set, i.e., U*U = I.
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We make use of multi-indices on tensor structures. For instance, when dealing
with a tensor grid {(21,i,,2;i,)}7, i,—1, We use & = (i1, 42) as the index for each point
and represent it by x; = (21,4, , 24, ). The one-to-one mapping between a multi-index
and its linear order is given by ¢ <> i1 + (i2 — 1)n, and the grid is also denoted as
{ml}f; Additionally, we denote |i| := i1 + i and 2! := i1is. These notations and
their corresponding meanings can be extended analogously to d-dimensional cases.

Our notations and terminologies of tensors are consistent with [34]. The mode-¢
product (contraction) of a tensor A € R™1*" X" and a matrix U € R™*™ is denoted
as A x, U € RM > Xne—1xmXner1 X Xna - The contraction of two tensors A and B is
represented by A X4 p B, where a and b are vectors specifying the dimensions in A
and B to be contracted.

The Tucker decomposition of a tensor A with core tensor G € RP1* " *Pd and
factored matrices {U, € R"*Pe}d_ s defined as follows:

(2.1) A = Tucker(G,{U}_ ) =G x1 Uy xo--- x4 Uyq.

The vector p = (p1,...,paq) is referred to as the Tucker rank or simply, the rank of
A. When p; = --- = pg = p, we also say p is the rank of .A. In this article, we often
consider 2d-order tensors where the first and last d dimensions correspond to points
in two different tensor grids. In such cases, the notation

Tucker (G, {U¢}{_1, {Vi}i_1) =G x1 U1 X2+ xqUq Xq41 V1 Xag2 -+ X24 Vg

is used to represent the Tucker decomposition.

It is often advantageous to enforce the factored matrices to be orthonormal, which
can be satisfied by most Tucker decomposition algorithms, such as those presented
in [13, 45]. In particular, given a Tucker computation (2.1), this can be achieved
through a series QR factorizations on each factored matrix, followed by a modification
to the core tensor. When QR factorization with column pivoting (QRCP) is adapted,
we can further compress the Tucker rank. Assuming that all p; = p and ny = n, then
the total complexity of the orthogonalization is &(dp?n + dp?*t1).

2.2. Hierarchical Matrices. The definition of H-matrices is based on the con-
cept of cluster tree, a tree encoding the partition information of the grid points.

DEFINITION 2.1 (Cluster tree). Let I be the index set associated with the grid
points from the discretization of IE (1.1). A tree T is said to be a cluster tree
corresponding to I if the following conditions hold:

1. Every node in Ty is a subset of I.

2. The root of Ty is I.

3. Each node 7 € T of Ty is not empty.

4. For every T € Ty, let children(7) be the set consisting of its children. Then,
either children(t) = 0 (7 is a leaf node) or it forms a partition of 7, i.e.,

T= |_| 7.

7/ €children(r)

Here we use U to denote the union of pairwise disjoint sets.

Typically, each point x; is associated with a computational domain 2;, which can be
viewed as the support of its corresponding piecewise-constant function and satisfies
the non-overlapping condition |Q; N Q;| = 0 for j # ¢. It can be obtained from the
Voronoi cells [2] associated with the grid points. In particular, when consdiering a
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uniform grid, €; is a square domain centered at x;. For a indexset 7 associated with
the points {x;};c-, we define Q; = U;c, ;.

When ) is a unit box [0,1]¢ and the points are obtained from a uniform grid,
the cluster tree can be constructed using a recursive 2¢ uniform partition. In the
construction of a cluster tree, a stopping criterion is typically imposed to prevent the
successive partition, ensuring that the number of indices in a leaf node is neither too
small nor exceeds a user-specified value, denoted as Ny. Specifically, when |7| < Ny,
we assign 7 be the leaf node and halt further partition on it.

EXAMPLE 2.1 (A cluster tree on 2D uniform grid). Suppose Q = [0,1]? and I is
associated with discretization points given by

h h
T; = ((21 —1)h+ 5,(2'2 - Dh+ 2), t = (i1,42), 1 <iq,i2 <,

where n € Ny and h = 1/n. Consequently, the corresponding computational domain
for each point is defined as Q; = [(i1 — 1)h,i1h] X [(i2 — 1)h,izh]. The cluster tree Ty
is a quadtree and its leaf nodes are shown in Figure 2.1.
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Fig. 2.1: Leaf nodes in the cluster tree in Example 2.1. Here n = 16, N = n? = 256
and Ny = 16. Different colors represent different leaf nodes.

The structure of H-matrices is determined by its admissibility condition, a crite-
rion for whether the interaction matrix of two domains can be regarded as low-rank.
There are typically two types of admissibility conditions: weak admissibility condition
and strong admissibility condition. Figure 2.2 demonstrates them respectively.

DEFINITION 2.2 (Weak admissibility). Two nodes 7 and o in T; are weakly
admissible if Q- and Q, are non-overlapping.

DEFINITION 2.3 (Strong admissibility). Two nodes 7 and o in T are strongly
admissible if

max{diam(Q2,), diam(Q,)} < ndist(2,,Qy),

where diam(2;) = maxg yeq, [|x — y| is the diameter of Q. and dist(Q2,,Q,) =
mingeq, yeq, || —y|| is the distance between Q; and Q.. Here > 0 is a predefined
hyperparameter. In this case ), and Q, are said to be well-separated.

When the kernel function in IE (1.1) is smooth except the diagonal and not highly
oscillatory, such as the Green’s function of elliptic PDEs, the main distinction between
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Fig. 2.2: Weak admissibility (left) and strong admissibility with parameter n = /2
(right) in Example 2.1. The grid points we consider is colored by green. The admis-
sible grid points with respect to them are colored by blue while the inadmissible ones
are colored by yellow. The dashed domain is the computational domain 2, for each
index set T.

weak and strong admissibility lies in whether the rank of the interaction matrix as-
sociated with two admissible nodes can be bounded by a constant independent of
the matrix size. Weak admissibility provides a straightforward hierarchical structure,
sometimes referred to as hierarchical off-diagonal low-rank (HODLR) matrices [1]
since all off-diagonal blocks of the matrices are regarded as low-rank. However, the
rank of these low-rank matrices may increase mildly with the matrix size [19, 31].
In contrast, strong admissibility ensures a numerically constant rank but results in a
more complex H-matrix structure [6, 25].

Given a cluster tree T; and an admissibility condition, the block cluster tree,
defined as follows, provides a partition of I x I and specifies which block possesses
a low-rank representation. The H-matrix is then defined using the block cluster tree
by compressing the submatrices of admissible leafs into low-rank matrices.

DEFINITION 2.4 (Block cluster tree). Suppose Ty is a cluster tree associated with
the index set I. The block cluster tree Tyxy, associated with T; and an admissibility
condition, is a tree whose nodes are subsets of I x I, which is constructed using the
following procedure starting from the root node (t,0) = (I,1I):

e If T and o are admissible, then (7,0) is an admissible leaf node.
e Ifchildren(7) = @ or children(c) = 0, then (7, 0) is an inadmissible leaf node.
e If children(7) # () and children(c) # 0, then (7,0) is a non-leaf node with
children nodes given by (7/,0") € children(r) x children(o).
Particularly, it can be directly verified that a block cluster tree is also a cluster tree.

DEFINITION 2.5 (Hierarchical matrix, H-matrix, [5]). Let I be an index set of
the grid points from the discretization of the IE (1.1) and T be a block cluster tree.
An H-matriz of rank r, denoted by A™, is a matriz on Trx; such that for every leaf
(1,0) € Trx1, the following conditions hold:

o If(7,0) is an admissible leaf node, then Ai’fo is a low-rank matriz with rank at
mostr, i.e., Ai’fa =UGYV* for some U € RI"X" vV e RlIOIX" gnd G € R™".

o If (1,0) is an inadmissible leaf node, then AH € RI7Xlol s o dense matriz.

e If (1,0) is a non-leaf node, then AT
where (7', 0") € children(r, o).

. 15 a block matriz with blocks A o
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The structures of corresponding H-matrices under weak and strong admissibility (with
n = +/2) of Example 2.1 are shown in Figure 2.3.

Fig. 2.3: H-matrices corresponding to Example 2.1 under weak admissibility (left)
and strong admissibility with parameter n = v/2 (right) where n = 16, N = n? = 256
and Ny = 42. The yellow submatrices are dense while the blue ones are low-rank.
The weak admissibility implies that there is only one dense submatrix (the diagonal
block) in each row block. On the other hand, under strong admissibility, each row
block has at most 9 dense submatrices.

Compared to the typical &(N?) storage complexity of a complete dense matrix,
the storage cost of an H-matrix is significantly lower, specifically &'(r N log N) [18, 22].
However, as we will demonstrate in Section 3.1, for a given accuracy, the upper bound
of the desired rank r in H-matrices typically grows exponentially with respect to the
dimension d, taking the form r = p®. This exponential dependence can lead to storage
challgenges for moderately large d.

3. Hierarchical Tucker Low-Rank Matrices. When considering interaction
matrices between two different tensor grids, Tucker decomposition is more appropriate
for the low-rank compression. By combing this idea with the H-matrix framework, in
this section we propose the HTLR matrix, which achieves linear storage complexity.
Additionally, we illustrate how the HTLR matrix can be effectively applied to a quasi-
uniform grid.

3.1. Tucker Decomposition from High-Dimensional Interpolation. In-
terpolation is a widely-used technique for obtaining low-rank representations of kernel
matrices [7, 15]. We first review the high-dimensional interpolation on a regular do-
main and then apply this method to construct the Tucker decomposition of interaction
matrices between two tensor grids.

We begin with the one-dimensional case. Suppose f: [a,b] — R is a function to
be interpolated on p Chebyshev points given by

b—a (2t —m b+a
— 1<t <p.
&t 3 COS< 5 )+ 5 <t<p

The interpolant of f is defined as _#j, 4 [f](2) = >_}_; (&) Lia,p);¢(x) where

17 &
L[a,b];t(‘r) i H

jot, g 8 T
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is the Lagrange interpolation function on the interval [a, b].
In the d-dimensional case, suppose f is a function defined on the box B =
szl[(lg, be], the interpolant of f using Chebyshev tensor points is given by

(3.1) lfl(@) = > f(&)Lps(x),

te(p]?

where &, = ({141, - - -, &z, ) 1S the interpolation point in B indexed by the multi-index
t = (t1,...,tq) and p is the number of interpolation points along each dimension.
The Lagrange interpolation function Lp.(x) is defined as the product of Lagrange
interpolation functions associated the interval on each dimension, i.e., Lp.(x) =
H?Zl Lia, b]:t, (z¢). The upper bound of the approximation error is given by the
following lemma.

LEMMA 3.1 (Approximate error of the d-dimensional interpolation, [23] Lemma

B.7). Suppose f is a function on B = H?Zl[ag,bd which has (p 4+ 1)-th continuous
derivatives, then for the Chebyshev interpolation (3.1), we have

)

d
(bz - ae>p+l 1074 fll oo, 5

(3.2) 17511~ flloo.p < 208 ; I TR

where A, is the Lebesgue constant and satisfies the estimate A, ~ 2log(p)/m (See [{4],
Theorem 15.2).

Let k(x,y) be the kernel function and B, = ngl[ag7 b¢] and B, = szl[Cg, dy)
be two disjoint boxes in R?. By applying (3.1) twice on & and y, we obtain

(33> k‘(iL‘,y)z Z Z k<£t7ns)LBT;t(w)LBa§S(y>'

te[p]? sep]d

Suppose {x; = (T1,i,,- -+, Ta;iy)} C Br and {y; = (Y15, -+ Yayja)} C Bo are two set
of points, each containing n¢ points. The interaction matrix K € R >*n" of them is
defined by K(i,j) = k(zx;,y;). Utilizing the interpolation scheme (3.3), each entry
K (i,7) can be approximated by

(3.4) K(i,j)~ Y > k(€.ns)Lps +(xi)Lb,.s(y;).
te[pld se[p]?

By exploiting the tensor form of the points as well as the Lagrange interpolation
functions, we denote

Ué(ib/f"f) = L[ag,bg];ug (xf;iz)v U, Rnxp’ 1<4< d,
(3.5) Ve(jg, VK) = L[cz,dz];”k (yf;jz)a Ve Rnxpa 1<6<d,
G(t,s) = k(&,,n,), G eRI",
Substituting these into (3.4), we can reformulate it as

(3.6) K~UGV",

where U = Uy @ - @U; € R" and V. = V@@ V; € R***". The
decomposition (3.6) serves as the low-rank representation of admissible leaf nodes in
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H-matrices [22, 23], requiring a storage of 2n?p? 4 p??. Typically, the matrices U and
V' are required to be orthonormal, which can be achieved through QR factorizations
on them, along with a modification of G. The overall complexity of this process is
O (p*'n? + p>?). The matrices U and V are called basis matrices and G is called the
core matrix of the low-rank decomposition.

However, because of the inherent tensor structure of points, it is more advan-
tageous to represent (3.4) using a Tucker low-rank decomposition, rather than con-
structing U and V explicitly. Let IC and G are 2d-order tensors defined by

’C(il, N ,id,jl, ce 7jd> = K(’L,J), g(tl, ce ,td,sl, ey Sd> = G(t, S).
Using (3.5), we can express (3.4) as the following Tucker decomposition:
(3.7) IC ~ Tucker (G, {U¢}i—, {Vi}iy).

Compared with (3.6), the Tucker low-rank structure (3.7) maintains the same ac-
curacy while revealing the essense of interpolation on tensor grids. It is also more
data-efficient, requiring only 2dnp + p>? storage. If we ignore the common cost p>¢ on
the core part (G or G), the Tucker low-rank matrix (3.7) exhibits greater effective-
ness, as the rest complexity, 2dnp, scales linearly with the dimension d. To meet the
requirement of orthonormal factored matrices, we perform an additional orthogonal-
ization step after the interpolation, as discussed in the end of Section 2.1. A detailed
algorithm is postponed till Section 4.1. The overall complexity is & (dp?n + dp?*+1).
Notably, the dominant term, dp?n, exhibits linear dependence on d.

Remark 3.2. This paper frequently treats a matrix as a tensor, or vice versa. To
maintain conciseness, we adopt the agreement that when dealing with two tensor
grids, the interaction can be represented as either a matrix or a 2d-order tensor.
The relationship between the two is given by K(i1,...,%4,71,---,Ja) = K(i,7). At
times, we may use matrix notation and tensor notation interchangeably to simplify
our illustrations, and this usage should be correctly inferred from the context.

We end this section with an error estimate for the interpolation (3.3), which pro-
vides an estimate of the numerical rank of the Tucker decomposition for a specific class
of kernel functions. One important property of them is the asymptotical smoothness.

DEFINITION 3.3 (Asympotically smoothness, [5]). A kernel function k: R? x
R? — R is said to be asymptotically smooth if there exists constants Cas,y > 0
depending only on k satisfying

|k (z, y)

o a3 |o+0| S
(3.8) 0505 k(x,y)| < Cas(a+B)!y Tz — gl AT

Ve £y, a,8 e N

where Oy = Og} -+ 034 and 85 = 8511 e 85: denote the multi-dimensional partial
differential operators.
For example, it could be verified that kernels k(x,y) = || — y|| = and k(x,y) =
log(||x — y||) are asymptotically smooth [23].

THEOREM 3.4 (Interpolation error for asymptotically smooth kernels). Suppose
k is an asymptotically smooth kernel defined on two boxes B, = H‘Z:l[ag,bg] and
B, = H?Zl[ce,dg] in R%. If dist(B,, B,) > nmax{diam(B,),diam(B,)}, then the
approximation error r(x,y) of the Chebyshev interpolation (3.3), defined by

r@y) = Y k& ns)Ls.(x)Ls,s(y) - k(z,y),

t,s€[p]d
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has the following estimate

4Cas’Yp+1A2d_ld
(3:9) (@, Y)lloo, - x B, < @m—pﬁ\\k(%y)ﬂoo,&ww

where Cas and 7y are the constants in (3.8) and A, is the Lebesgue constant in (3.2).

Proof. The desired estimate follows directly from Lemma 3.1 and the property
outlined in (3.8). o

From the estimate of the Lebesgue constant A, for a fixed dimension d, the growth
rate of the numerator in (3.9) with respect to p can be considered negligible compared
to the denominator when 4n > « (a condition that is usually satisfied). Consequently,
Theorem 3.4 demonstrates that for an asymptotically smooth kernel, if B, and B,, are
well-separated, the relative approximate error of Chebyshev interpolation decreases
nearly exponentially as the interpolation order p increases. Additionally, we deduce
from (3.9) that in this case, the numerical rank of the interaction matrix remains
independent of its size.

3.2. Hierarchical Tucker Low-Rank Matrices. Motived by the Tucker low-
rank structure discussed in Section 3.1, we propose the definition for hierarchical
Tucker low-rank matrices. Since our previous discussion relies on the tensor structure
of the grid, we focus on the discretization (1.3) and require the cluster tree and block
cluster tree to inherit the “tensor property” as well.

DEFINITION 3.5 (Tensor node cluster tree). Let I = {i:14 € [n]} be the index
set associated with tensor grid points from the discretization (1.3). A cluster tree Ty
is called a tensor node cluster tree if every node T € Ty can be expressed in the form
T =171 X -+ X T4, where each 7y is the index set corresponding to the {-th dimension.

DEFINITION 3.6 (Tensor node block cluster tree). Suppose T; is a tensor node
cluster tree with root index I. The tensor node block cluster tree is defined as the block
cluster tree Ty corresponding to Ty and an admissibility condition.

One main property of the tensor node cluster tree is that for every node, the
corresponding points exhibit a tensor structure and its computational domain is a
d-dimensional box. Therefore, the submatrices can be approximated using Tucker
low-rank decomposition.

DEFINITION 3.7 (Hierarchical Tucker low-rank matrices, HTLR matrices). Sup-
pose Trx 1 is the tensor node block cluster tree with root I. We define a matrix AHTLR
as an HTLR matriz (on Trxr) of rank p if for every leaf (7,0) € Tyx1, the following
conditions hold:

o If(7,0) is an admissible leaf, then is a Tucker low-rank (TLR) matrix

of rank at most p, i.e., AEZLR = Tucker (G, {U}¢_1, {Vi}i ) for some
U, e RIM*?, Vv, e RI7XP and G € RP <P,

o If (1,0) is an inadmissible leaf, then ATT™R is o dense matriz.

o If (7,0) is a non-leaf node, then A -"%

where (7',0") € children(r, o).

HTLR
AT o

is a block matriz with blocks AE,TUL,R,

From the relationship (3.6) and (3.7), the conventional low-rank representation of
rank p? achieves the same accuracy as the TLR representation of rank p when both are
derived from high-dimensional interpolation. Using the storage cost of TLR matrices
discussed in Section 3.1, the storage complexity for an HTLR matrix is linear, which
is stated in the following proposition.
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PROPOSITION 3.8 (Storage of HTLR matrices under weak admissibility). For
a fired dimension d > 2 and Ny = nd. Let I = {i:i € [n]¢} be the index set
corresponding to the tensor grid points from the discretization (1.3) and N = n?.
Suppose the tensor node cluster tree Ty is constructed by a 2% partition whose every
leaf node contains fewer than Ngy points and Tyxy is the corresponding tensor node
block cluster tree under weak admissibility condition. If AYTYR is an HTLR matriz
of rank p and p < ng < 2p, then the storage required for AMTIR s O(peN), where
the prefactor depends only on d.*

Proof. Withou loss of generality, assume N = n? = 24Lnd | where L is the max-
imum level in T;. For each level 0 < ¢ < L, note that the matrix size corresponding
to each node, the number of nodes, inadmissible and admissible blocks of a node are
bounded by N/2%, 2% and 1, 2¢ — 1 respectively. Therefore, the storage of an HTLR

matrix of size N, denoted by SHTER(N), can be computed as

L
SHTLR(N) — Z 2d€(2d _ 1)(2dn02[‘7£p + p2d) 4 2dL(N/2dL)2
(3.10) =

N N
< 8dpnoﬁ + pZdE +ndN < (16dp2d +p?+ ded>N = 0(p’N),
0 0

where the prefactor depends only on d. ]

Since the only difference between an H-matrix and an HTLR matrix is the rep-
resentation of low-rank submatrices, by a discussion analogous to that in the proof of
Proposition 3.8, the storage of an H-matrix of size N with rank p? is

(311) SH(N) < <2dd_1pd log(N/No) + p + ded) N

= 0(p"Nlog,(N) + p*N).

Comparing (3.10) and (3.11), we conclude that HTLR matrices always requires lower
storage than H-matrices. Furthermore, examining the distinct components of the
exact storage complexity expression reveals that the first term for HTLR matrices
has a smaller coefficient that depends only on the dimension d. In contrast, the
coefficient for H-matrices grows exponentially with d and logarithmically with N.
Therefore, HTLR matrix also exhibits better asymptotic performance. Finally, it is
remarkable that for the HTLR matrix, the main cost is the storage of Tucker core
tensors, while that of the H-matrix is the storage of basis matrices.

Similar results and dissussions can be obtained under strong admissibility. The
only difference is the prefactor hidden in the & notation.

PROPOSITION 3.9 (Storage of HTLR matrices under strong admissibility). Un-
der the same condition in Proposition 3.8 except that T« is constructed under the
strong admissibility condition with n = v/d. If AYT*® is an HTLR matriz of rank p,
then the storage required for ATT*R s G(piN).

Proof. The calculations are similar to that in the proof of Proposition 3.8, the
only difference is that the number of inadmissible and admissible blocks of a node is
bounded by 3¢ and 6¢ — 3¢, respectively. O

IFrom now on, for every complexity estimate, the prefactor is assumed to depend only on d.
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3.3. HTLR Matrices on the Quasi-Uniform Grid. The HTLR matrix pro-
posed in Section 3.2 requires a (uniform) tensor grid. However, in certain scenarios,
functions are sampled from a quasi-uniform grid instead. In this section we show how
HTLR matrices can be appied to the IE (1.1) using a discretization on the quasi-
uniform grid. As with the non-uniform fast Fourier transform [4, 20], the key tool is
the interpolation between the tensor grid and the quasi-uniform grid.

Suppose quasi-uniform grid points are given by {z;}Y; with non-overlapping
computational domains {Q"}Y | satisfying 2 = UY Q. An example of this can be
seen in the triangulation of 2 from the finite element method, where each x; is the
the center of the triangular domain, as illustrated in Figure 3.1. The discretization in
this case is expressed as follows:

N
a(mi)ui+ZKi7j|Q?u|uj Zf(CCZ), Z: 1,...,N,
j=1
where
K = k(mi;mj)a .] 7é ia
Y U, ks y)dy/ Q1] G =

This formulation can be viewed as applying the collection method using piecewise-

constant basis functions {1gau (a:)}z

Fig. 3.1: Triangulation of [0, 1]2. The edges of each triangle are colored blue, and the

Wy

centers are colored orange and marked with star “x”.

Throughout this section, we assume the vector w in the forward computation is
sampled from a smooth function u(x), i.e., u; = u(x;). To utilize the HTLR matrix,
a finer uniform tensor grid is prepared. Let m denote the number of points in each di-
rection, resulting in the uniform grid denoted by {ﬁct}?;dl with computational domains
{Q}mi}?;dl. Define M = m? as the number of uniform grid points and let A repre-
sent the matrix defined by (1.3) on the uniform grid. We introduce two interpolation
matrices T : RM — RY and S : RY — RM, that facilitate the relationship between
the quasi-uniform grid and the uniform grid, such that the following approximation
holds:

(3.12) Au~TASu,

Thus, the forward evaluation Au can be approximately computed as TASu. The
equation (3.12) can be interpreted as the following three steps: We first interpolate
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a function on the quasi-uniform grid to the uniform tensor grid by multiplying the
interpolation matrix S. Next, we perform the matrix-vector multiplication on the
uniform tensor grid using A. Finally, we interpolate the result from the uniform
grid to the quasi-uniform grid by acting T on it. Since A can be compressed into
an HTLR matrix, its matrix-vector multiplication can be computed efficiently (see
Section 4.2). On the other hand, as will be shown later, the matrices T' and S are
local interpolation matrix and, therefore, sparse. By combing these observations, we

conclude that the matrix-vector multiplication can be performed efficiently on the
~HTLR
quasi-uniform grid. If we replace A in (3.12) with its HTLR approximation A

this can also be interpreted as a data-sparse representation of A.

We discuss the choice of M and the construction of T" and S. The selection of
M 1is a trade-off between accuracy and efficiency: A large M improves the accuracy
but may reduce the efficiency. Typically, M ~ p?N is sufficient where p > 1 is a
small constant. Relevant numerical results are presented in Section 5.4. To construct
the interpolation matrices, we adopt the perspective of the Garlarkin method. Every
vector u € RY on the quasi-uniform grid {z;}, is interpreted as a piecewise-constant
function defined by

N
ul(x) = Z u;lgan ()
i=1

For a given uniform tensor grid {#;}},, the task is to determine the coefficients {1}
such that

(3.13) ut () A Z iy Lyt (2

By taking the inner product with 1guni(z) on both sides, we obtain

|Qum Qqu
ut Z Qun1| ui’

which means that the interpolation matrix from quasi-uniform grid to uniform grid
is given by S;; = Q™ N QM|/|Qmi|. Similarly, the the interpolation matrix T' from
uniform grid to quasi-uniform grid is given by T;; = |Q N Q| /|QF"]. Since each
region only intersects with few neighboring regions, both T' and S are sparse, with
the number of nonzeros approximately &'(max{M,N}) = 0(M).

4. Construction and Application of HTLR Matrices. This section focuses
on the construction and application (matrix-vector multiplication) of HTLR matri-
ces. Generally speaking, operations adhere follow a similar framework to those of
H-matrices, with the exception of a distinct step related to admissible leaf nodes.
Throughout this section, we assume that T;.; is a given tensor node block cluster
tree associated with a uniform grid.

4.1. Construction of HTLR Matrices. The construction of the HTLR ma-
trix ATTER directly follows the process outlined in Definition 3.7. More specifically,
let (7, 0) be the node we are currently working on. This can be categorized into three
cases:

e (7,0) is an admissible leaf node: In this case, computational domains €,
and (1, are non-overlapping and A, , is a TLR matrix constructed from the
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kernel function k. Specifically, we first construct the TLR matrix A,, =
Tucker (g, (U}, {Vg}‘zi:l) by the d-dimensional interpolation of the ker-
nel matrix as (3.5), followed by a sequential QR to have each U, and V,
orthonormal, then multiply the core tensor G by h% and R factors from the
QR factorization.

e (7,0) is an inadmissible leaf node: We direct construct the dense matrix for
AHTLR

y Ty

(4.1) AEZLR = (a(mi)éi,j + Ki,jhd> s

1ET,JET

where d; ; is the Kronecker notation such that §; ; = 1 wheni = jand d; ; =0
when i # j.
e (7,0) is a non-leaf node: The construction is performed recursively for each
child (7', 0’) € children(r, o).
The entire procedure is summarized as in Algorithm 4.1, which starts from the root
(I,I) of T[X[.

Algorithm 4.1 Construct(a(w), k(x,y), (1, U),p).

Input: Functions a(x) and k(x,y) in (1.1), current node (7, 0), target rank p
Output: The HTLR matrix representation of the submatrix AEZLR
1: if (7,0) is an admissible leaf then
2. Let Q. and Q, be the associated domains and {z;} and{y;} be the tensor
points corresponding to 7 and o
3:  Compute the core tensor G and factored matrices {U,} and {V ¢} by Chebyshev
interpolation as in (3.5)
for/=1,...,ddo
Compute the QR factorization Uy = W, R, and V, = QT
Update Ug — Wg and Vy QZ
end for
Update g« (hdg) X1 Ry Xg+- Xq Ry Xd+1 T, Xd+2 "+ X24d T,
9:  Set AEZLR = Tucker (G, {U¢}¢_,, {Vi}i,).
10: else if (7,0) is an inadmissible leaf then
11:  Form AEELR by (4.1)

N>

12: else

13:  for (7/,0") € children((r,0)) do

14: AITER — Construct (a(z), k(z,y), (7', 0"),p)
15:  end for

16: end if

The leading complexity in Algorithm 4.1 arises from the orthogonalization of
factored matrices, which admits

Yo (2“ (2dno2"~“p* + 2dp2d+1)> = O(p°~ N +p™*'N).

L
{=1

The dominant step in this process is the contraction with tensor G. On the other
hand, for H-matrices, the leading complexity also stems from the orthogonalization
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of low-rank factors:

L
Zﬁ(ﬂ@dl)(zd@ Ingp* + p? )) 0(p*'Nlog N + p*'N).
=1

However, in this case, the dominant step is the QR factorization of basis matrices
U and V. Therefore, the total construction complexity of HTLR matrices and H-
matrices are &(p*T'N) and & (p?*’N log,(N)) respectively, indicating that the con-
struction of HTLR matrices is more efficient. The main difference is that, for HTLR
matrices, we deal with d matrices of size n x p, while for H-matrices we need to
construct and orthogonalize a matrix of size n? x p?.

4.2. Application of HTLR Matrices. Using the hierarchical structure, the
application, or matrix-vector multiplication, of HTLR matrices can also be computed
efficiently. Starting at (I, 1), let (7,0) be the current node, and we aim to update

(4.2) fr fot Al R,

There are three cases depending on the type of the node (7,0):
e (7,0) is an admissible leaf: In this case, assume the TLR representation of
AEZLR is denoted by AHTLR Tucker( AUS,{V}L ). The matrix-
vector multiplication is calculated via

(4.3) [, f+4Ug@---@U)GVi®- - Vi)u,,

where G is obatained by reshaping G into a matrix (cf. Remark 3.2). The
product of Kronecker product of a matrix series and vector is computed as fol-
lows. Consider the calculation of w = (V4®---® V1)*u where V, € R™*P¢
and u € R™ "4, By reshaping u to a d-dimensional tensor U, the tensorized
result YW can be obtained through contractions along each dimension, ex-
pressed as

W:Z/IX1V>‘£ ><2~--><dV2.

Using these tensors, the multiplication of matrix h = Gw can be reformulated
as a tensor contraction H = G X[441,... 24],1,...,q) YV- Finally, the computation
of f=(Us®---®@U;)h is analogous to the application of (V®---® V1)*.
Suppose the matrices U, and V; are of size n x p, and G are of size p¢ x p?,
the computation complexity of (4.3) is & (dpn® + p*®). This is more efficient
than the conventional low-rank representation in -matrices with r = p<,
whose complexity is & (pdnd + de).

e (7,0) is an inadmissible leaf node: For this case, the update (4.2) is computed
directly since AHTLR is a small dense matrix.

e (1,0)isa non—leaf node: The update can be reduced to each children node,
i.e., we perform f_, < f. + AHT u, for each (7/,0") € children(r, o).
Algorithm 4.2 and Proposition 4.1 prov1de the pseudocode as well as the com-

plexity results of HTLR matrix-vector multiplication.

PROPOSITION 4.1 (Complexity of HTLR application). For both weak and strong
admissible conditions, the matriz-vector multiplication complexity for a rank-p HTLR
matriz is O(pN log N + p?N).
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Algorithm 4.2 HMultVec(AHTLR, (r,0),u, f)

Input: HTLR matrix AT current node (r,0), vectors u and f.
Output: f_ <« f_+ AEZLRUU.
1: if (7,0) is an admissible leaf then
2:  Let AEELR = Tucker (G, {U/}¢_, {Ve}i,)
3 Reshape u, to a d-dimensional tensor U,
4: W[,:lxlgle’{x2---><dV§
5 Hr =G X[g41,..2d)[1,....q Wo
6: Fr=H,x1 Ui x2---xqUy
7:  Reshape F, to a vector and add it into f.
8: else if (7,0) is an inadmissible leaf then
9:  Compute f_«+ f. .+ AEZLRUU

10: else

11:  for (7/,0") € children((,0)) do
12: HMultVec(AHTLR, (', 0"),u, f)
13:  end for

14: end if

For a rank-p? H-matrix of size N, the complexity of matrix-vector multiplication
of is O(p?Nlog N + p?N). Specifically, for both HTLR matrices and #-matrices,
the computations involving dense matrices in inadmissible leaves incur the same cost,
O(p?N). Similarly, the complexity for computations associated with core matrices
or tensors in admissible leaves is also @(p?N). However, when it comes to the com-
putation of factored or basis matrices, the complexity for HTLR matrices is reduced
to O(pN log N), whereas the complexity for H-matrices is &(p?N log N). From the
analysis, we conclude that HTLR matrices have a significantly smaller prefactor in the
leading complexity, and are more efficient than H-matrices when applied to a vector.

5. Numerical Results. We apply HTLR matrices and H-matrices to several
examples to evaluate their efficiency. Two types of kernels are considered:

e Gaussian Kernel: k(x,y) = exp(—|z — y|*/(20?)). The Gaussian kernel is
smooth and has no singularity. In our experiments, the bandwidth o is set
to be v/d where d is the dimension of the problem.

e Single Layer Potential (SLP) Kernel: k(z,y) = —log([|lz—yl|)/(2n) for d = 2
and k(z,y) = || —y||/(47) for d = 3. The SLP kernel has singularity on the
diagonal and is smooth everywhere else.

All algorithms are implemented in MATLAB R2023b. The experiments are carried
out on a server with an Intel Gold 6226R CPU at 2.90 GHz and 1000.6 GB of RAM.

For each example, the following notations are adopted: We use ¢, and ¢, to denote
the runtime (in seconds) for the construction and application, and my to denote
the memory cost (in GB). The approximated relative error of the fast matrix-vector
multiplication is defined by

o F ) = £
IF @Dl

where f = Au and f = Aw are the exact matrix-vector multiplication and the ap-
proximated result corresponding to the HTLR or H-matrix respectively. The index
set I, is randomly sampled from [N] and contains |I,.| = 1000. Based on the results,
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eaxr Serves as a good estimate for the exact relative error. Vector u € RY is generated
randomly (Section 5.2 and Section 5.3) or evaluated from a specific function (Sec-
tion 5.4). Unless specified, we set the threshold of leaf nodes and Tucker rank to
Ny = 162 and p = 8 for 2D problem, and Ny = 5% and p = 4 for 3D problems. In Sec-
tion 5.1, we discuss the tensor low-rank representations of submatrices corresponding
to these kernels under different cases. Sections 5.2 and 5.3 demonstrate results on
uniform grids in 2D and 3D, respectively. Finally, in Section 5.4, we illustrate the
application of HTLR matrices on quasi-uniform grids.

5.1. Exploring Tensor Low-Rank Representations of Kernel Functions.
We numerically explore the Tucker low-rankness of interaction matrices, with a com-
parison to conventional low-rank matrices. Two configurations of domains for the
interaction matrices are examined: Neighbor domains, which consist of two adjacent
subdomains, and well-separated domains, which are characterized by two strongly
admissible subdomains. To construct a low-rank decomposition, we use the following
approaches: For both types of low-rank structures, interpolation (INTERP) method
discussed in Section 3.1 is used to create a low-rank decomposition. Besides, we ap-
ply SVD to compute conventional low-rank decomposition and the STHOSVD [45]
to compute the Tucker decomposition. The accuracy of the compression is measured
using the relative error with respect to the Frobenius norm.

In the 2D case, we consider following domains: 1 = [0, h] x [0, k], Qg = [h, 2h] x
[0, h] and Q3 = [2h, 3h] % [0, h] where h = 0.25. The domains §2; and 2 are neighbors,
while Q1 and Q3 are well-separated. Each domain is discretized with 32 points in each
direction. The rank p in each direction ranges from 1 to 16, and the rank of the SVD
equals to p?. Similarly, the domains in 3D are given by Q1 = [0,h] x [0, k] x [0, A],
Qo = [h,2h] x [0, h] X [0, h] and Q3 = [2h, 3R] x [0, h] X [0, h] for h = 0.25. Each domain
is discretized with 16 points in each direction, and p ranges from 1 to 8 with the rank
of the SVD equals to p3.

10° 0 0 0
——INTERP 10 10 \M 10
5 —-SVD
5 10° STHOSVD 108 105 108
13
2 \
5 1010 \ 10710 \\ 10710 10710
1015 =l s o ——JPTeH 1015 =
5 10 15 5 10 15 5 10 15 5 10 15
P p P

10°

P
——INTERP M
->-SVD
10°) N\, STHOSVD 1051 N\, 108 108
1040 \ 1040 \ 1040 10—10

1045 1045 — 10'15 10—15

relative error

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
P P P P
(a) Gaussian kernel (b) Gaussian kernel (c) SLP kernel and (d) SLP kernel and
and neighbor do- and well-separated neighbor domains. well-separated  do-
mains. domains. mains.

Fig. 5.1: Relative approximation errors of Gaussian and SLP kernel. The size of
the interaction matrix is 322 x 322 for 2D problems (top) and 163 x 16 for 3D
problems (bottom).
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The results of different low-rank decompositions are plotted in Figure 5.1. For
well-separated domains (Figure 5.1b and 5.1d), all three methods exhibit a rapid decay
in error as p increases, regardless of the kernel. In this scenario, the interpolation
method is sufficient to achieve an accurate low-rank decomposition. However, when
two domains are neighbors (as depicted in Figure 5.1a and 5.1c), the decay rates of
the relative error exhibit dependence on the kernels. For the Gaussian kernel, both
low-rank structures still work well, with the interpolation-based construction yielding
satisfactory results. In contrast, for the SLP kernel, in contrast, the Tucker low-rank
format proves unsuitable. Even with the application of STHOSVD, the relative error
decreases very slowly as the rank increases. Consequently, in the subsequent sections,
we will adopt SLP kernel with strong admissibility condition and Gaussian kernel
with weak admissibility condition.

5.2. Uniform Grid in Two Dimensions. This section provides experiments
of HTLR matrices on 2D uniform grids. Let Q = [0,1]? be the unit square and
a(z) =0in (1.1).

2
102 10
. —~
210 E@ =
< = +F ——
—HTLR g . —HTLR 100 —HTLR
—HMAT 10 —HMAT ~HMAT
o O(N) O(N) O(N log N)
10 6 8 6 8 6 8
10 10 10 10 10 10
N N N
(a) Construction time. (b) Memory. (c) Application time

Fig. 5.2: Time and memory costs of HTLR matrices and H-matrices for the Gaussian
kernel under weak admissibility in 2D.

We focus on the Gaussian kernel under the weak admissibility condition first. We
discretize the problem with n points in each dimension, where n ranges from 256 to
8192. Figure 5.2 plots the construction and application time as well as the memory
usage of HTLR matrices and H-matrices. The data point of H-matrix of size 81922
is missing due to the memory limitation.

It is evident that both t. and my, scales as &(N), as predicted while the applica-
tion time fluncates but asymptotically follows the &(N log N) complexity. Detailed
information is given in Table 5.1. Since the low-rank components in HTLR matrices
and H-matrices are both constructed by interpolation, they exhibit the same level of
accuracy. Therefore, we only report the error for HTLR matrices. Compared with
‘H-matrices, the construction runtime of HTLR matrices is, on average, 4 to 5 times
faster and the memory usage is 8 to 10 times lower. These advantages become in-
creasingly pronounced as the size N grows. Notably, the error e, remains stable as
N increases. This indicates that, when dealing with the Gaussian kernel, empolying
weak admissibility with a constant rank is sufficient to achieve the desired accuracy.

Next we consider the SLP kernel under the strong admissibility condition. In this
scenario, n ranges from 256 to 4096. Figure 5.3 illustrates the comparison between
HTLR matrices and H-matrices. The data point of H-matrix of size 40962 is absent
due to the memory limit.

As anticipated, the complexities of &(N) for construction and storage are strictly
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N D te (s) speedup my (GB) memory saving €air
2562 8 1.5e+00  2.8x 1.6e-01 5.6 1.3e-11
5122 8 3.8¢+00  4.5x 6.5e-01 6.8 x 2.1e-11
10242 8 1.6e+01  5.0x 2.6e+00 7.9 1.5e-10
20482 8 6.8e+01  5.4x 1.0e+01 9.1x 2.0e-11
40962 8 2.8e+02  6.2x 4.1e+01 10.2x 1.8e-11
81922 8 1.le+03 - 1.7e+02 - 2.3e-11

Table 5.1: Numerical results of HTLR matrices for the Gaussian kernel under weak
admissibility in 2D.

10°
102
. =102
= O o
~10? - .8
—HTLR|| &40 —HTLR —HTLR
~—HMAT —~—HMAT 10° *g'(\ng "
om) o0 o) o
6 6
10 10 10°
N N N
(a) Construction time. (b) Memory. (c) Application time

Fig. 5.3: Time and memory costs of HTLR matrices and H-matrices for the SLP
kernel under strong admissibility in 2D.

followed. However, the application time exhibits a &'(N) complexity instead of the
expected O (N log N). As discussed following Proposition 4.1, this discrepancy may
arise because the prefactor associated with the &(N log N) term is smaller than that
of the O(N) term. Consequently, when the size of the matrix is not sufficiently large,
the O(Nlog N) term does not dominate the complexity estimate. Additionally, the
application time does not follow the anticipated complexity initially. This behavior
occurs because, for smaller matrix sizes, the number of admissible blocks is relatively
small compared to the matrix size, resulting in a runtime that scales between &(N)
and O(N?).

Table 5.2 presents the results. The construction runtime of HTLR matrices is 3
to 4 times faster and the memory usage is 4 to 5 times lower. However, the advantage
here is not as obvious as it is under the weak admissibility condition, mainly because
of the increase in the number of dense blocks. Moreover, the relative error does not
exhibit significant variation as the matrix size N increases, which is consistent with
Theorem 3.4. Therefore, strong admissible HTLR matrices prove to be more appli-
cable in this case, as they demonstrate superior performance in both time efficiency
and memory usage.

5.3. Uniform Grid in Three Dimensions. The example in this section is the
3D analogue of Section 5.2, where Q = [0, 1]* with a(x) = 0.
When the kernel function is the Gaussian, n ranges from 32 to 512. Figure 5.4
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N p te (8) speedup my (GB) memory saving €air
2562 8 7.6e400 2.9x 1.3e+00 3.4x 1.1e-07
5122 8 3.0e+01  3.5x 5.4e+00 4.3x 8.1e-08
1024 8 1.3e+02  3.9x 2.3e+01 5.4% 1.2e-07
20482 8 5.4e+02 4.3 9.2e+401 6.4x 5.3e-08
40962 8 2.1e+03 - 3.7e+02 - 4.4e-08

Table 5.2: Numerical results of HTLR matrices for the SLP kernel under strong
admissibility in 2D.

10°
_10? 102
— m —
2 o )
- —HTR| & —HTR|| . —HTLR
~—HMAT 10 ~—HMAT 10 — HMAT
ON) O(N) O(N log N)
10°
5 5 5
10 10 10
N N N
(a) Construction time. (b) Memory. (c) Application time

Fig. 5.4: Time and memory costs of HTLR matrices and H-matrices for the Gaussian
kernel under weak admissibility in 3D.

plots corresponding results and detalied data can be found in Table 5.3. The data
point of H-matrix of size 5123 is missing due to the memory limitation.

It is straightforward that the &(NN) complexity for construction and memory, as
well as the (N log N) complexity for application, are nearly strictly upheld. Similar
to the 2D case, the proposed HTLR matrices demonstrate greater efficiency than -
matrices, achieving nearly double the speed in construction and offering a memory
savings of 7 to 10 times. The memory cost of a HTLR matrix of size 5123 is nearly
590 GB, which is still less than that of a H-matrix of size 2563 (744 GB). However, as
illustrated in Figure 5.4c, the advantage in application is not immediately noticeable
until NV reaches a moderately large size. Further increasing the rank could potentially
highlight the benefits of HTLR matrices. Further increasing the rank could reveal the
benefits of HTLR matrices. Additionally, as indicated in the last column of Table 5.3,
the error in this scenario remains small even when a constant rank is employed.

As for the SLP kernel, we discretize the problem with n points in each dimension
for for n = 32, 64 and 128 respectively. The corresponding results are summarized in
Figure 5.5 and Table 5.4. The data point of H-matrices when N = 1283 is missing
due to the memory limitation.

The estimated complexities are consistent with our numerical observations, indi-
cating that HTLR matrices are efficient in both construction (1.6 times faster) and
memory usage (3 to 4 times lower). Like the 2D case, the application error under
strong admissibility exhibits only mild variation as the matrix size IV increases, which



HTLR MATRICES: CONSTRUCTION AND MATRIX-VECTOR MULTIPLICATION 21

N p t.(s) speedup my (GB) memory saving  eu
323 4 4.0e+00  1.8x 1.4e-01 5.5% 2.3e-05
643 4 2.7e+01 2.0x 1.2e+00 7.1x 7.4e-06
128% 4 22e4+02  23x  9.2e+00 8.6 8.6e-06
2563 4 1.8e+03 2.5 7.4e+4-01 10.1x 1.2e-05
5123 4 1.5e4+04 - 9.9e+02 - 5.4e-05

Table 5.3: Relative application error of HTLR matrices and H-matrices for the Gauss-
ian kernel under weak admissibility in 3D.
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(a) Construction time. (b) Memory. (c) Application time

Fig. 5.5: Time and memory costs of HTLR matrices and H-matrices for the SLP
kernel under strong admissibility in 3D.

ensures that it remains an accurate and stable approximation of the matrix.

N p  t.(s) speedup my (GB) memory saving Cair

323 4 4.8e+01 1.6x 2.1e400 3.3x 1.9e-04
643 4 5.4e+02 1.6x 2.3e+01 4.2x 2.6e-04
1283 4 5.1e+03 - 2.1e4-02 - 3.1e-04

Table 5.4: Relative application error of HTLR matrices and H-matrices for the SLP
kernel under strong admissibility in 3D.

5.4. Quasi-Uniform Grid in Two Dimensions. In this section, we present
two examples to illustrate the application of HTLR matrices on quasi-uniform grids.
More specifically, we consider the same domain and kernel functions as discussed in
Section 5.2. The discretization points are given by the triangulation of 2 where each
x; is the the center of the triangular domain (See Figure 3.1). The matrix size N
is 8192, 32768, 131072 and 524288. Let M be the number of points of the uniform
grid and A and A be the corresponding matrices of quasi-uniform and uniform grid
respectively, as discussed in Section 3.3. In this case, A is represented by its HTLR
matrix approximation. we define the oversampling ratio p = /2M /N, where the
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factor 2 comes from the fact that 1 square domain corresponds to 2 triangular domains.
The underlying function u(x) of vector w is selected to be

w(x) = u(zr,x2) =1+ 0.5~ (#1703)*=(#2-0.6) sin(5xqz2).

1074 1073

$10° S107

104 108 10% 10°©

(a) Gaussian kernel. (b) SLP kernel.

Fig. 5.6: Relative application error of HTLR matrices for Gaussian and SLP kernel
in 2D. Left: Gaussian kernel. Right: SLP kernel.

Figure 5.6 describes the approximated relative application error of A for different
sizes. Weak and strong admissibility are adopted for Gaussian kernel and SLP kernel
respectively. For each N, a larger p leads to a smaller error, which aligns with our
intuition. Conversely, for a fixed p, the error decreases as N increases. This is due
to the fact that both the quasi-uniform and uniform grids become finer with larger
N Particularly, when N = 524288 and p = 2, the errors for the Gaussian kernel and
SLP kernel are approximately 10~ and 10~ respectively. In comparison, Tables 5.1
and 5.2 indicate that the application errors of the HTLR matrix at this size are
about 107!% and 1077, suggesting that the dominant error in this case arises from
interpolation. We claim that choosing a small p (for example, p = 2) is sufficient for
many practical application, as the corresponding curves have demonstrate farily good
performance.

6. Conclusion and Future Work. In this paper, we introduce hierarchical
Tucker low-rank matrices and present the corresponding algorithms for construction
and matrix-vector multiplication. When the underlying discretization exhibits a ten-
sor structure, HTLR matrices are generally more efficient than H-matrices. We estab-
lish that the complexity for storage and construction is &'(N), while the complexity for
application is (N log N). Compared to H-matrices, the prefactors of the dominant
terms are smaller and usually exhibit a linear dependence on the dimension rather
than an exponential dependence. Furthermore, we demonstrate the application of
HTLR matrices on quasi-uniform grids, enhancing their applicability. We also dis-
cuss the relevance of Tucker low-rank structures. Numerical results show that HTLR
matrices usually save 3 to 10 times in memory and provide speedups of 2 to 6 times
compared to H-matrices.

There are several future directions to consider. One potential avenue is to de-
velop additional algebraic operations for HTLR matrices, including matrix addition,
multiplication, and LU decomposition. Furthermore, exploring the parallelization
of these algorithms could enhance their efficiency and scalability, enabling them to
accommodate larger problem sizes effectively.
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