
Mask Embedding for Realistic
High-Resolution Medical Image Synthesis

Yinhao Ren1, Zhe Zhu2, Yingzhou Li3, Dehan Kong4, Rui Hou5,
Lars J. Grimm2, Jeffery R. Marks6, and Joseph Y. Lo1,2,5(B)

1 Department of Biomedical Engineering, Duke University, Durham, USA
{yinhao.ren,joseph.lo}@duke.edu

2 Department of Radiology, Duke University School of Medicine, Durham, USA
{zhe.zhu,lars.grimm}@duke.edu

3 Department of Mathematics, Duke University, Durham, USA
yinzhou.li@duke.edu

4 Department of Automation, Beijing Institute of Technology, Beijing, China
dehan.kong@duke.edu

5 Department of Electrical Engineering, Duke University, Durham, USA
rui.hou@duke.edu

6 Department of Surgery, Duke University School of Medicine, Durham, USA
jeffery.marks@duke.edu

Abstract. Generative Adversarial Networks (GANs) have found appli-
cations in natural image synthesis and begin to show promises generating
synthetic medical images. In many cases, the ability to perform controlled
image synthesis using masked priors such as shape and size of organs is
desired. However, mask-guided image synthesis is challenging due to the
pixel level mask constraint. While the few existing mask-guided image
generation approaches suffer from the lack of fine-grained texture details,
we tackle the issue of mask-guided stochastic image synthesis via mask
embedding. Our novel architecture first encodes the input mask as an
embedding vector and then inject these embedding into the random
latent vector input. The intuition is to classify semantic masks into par-
titions before feature up-sampling for improved sample space mapping
stability. We validate our approach on a large dataset containing 39,778
patients with 443,556 negative screening Full Field Digital Mammogra-
phy (FFDM) images. Experimental results show that our approach can
generate realistic high-resolution (256×512) images with pixel-level mask
constraints, and outperform other state-of-the-art approaches.

Keywords: Generative Adversarial Networks · Image synthesis ·
Mask embedding · Mammogram

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-32226-7 47) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2019
D. Shen et al. (Eds.): MICCAI 2019, LNCS 11769, pp. 422–430, 2019.
https://doi.org/10.1007/978-3-030-32226-7_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32226-7_47&domain=pdf
https://doi.org/10.1007/978-3-030-32226-7_47
https://doi.org/10.1007/978-3-030-32226-7_47
https://doi.org/10.1007/978-3-030-32226-7_47


Mask Embedding for Realistic High-Resolution Medical Image Synthesis 423

1 Introduction

The rapid development of generative models especially on training methodology
[1,9] and architecture [10], has led to the significant improvement of resolu-
tion and quality of the output images. In the image editing scenario, semantic
control of the generated images such as object category and shape is highly
desired. Many studies have explored conditional Generative Adversarial Net-
works (cGANs) [4,12] using class labels (one-hot vectors) [4] and mask labels
[8]. Producing highly stochastic outputs as well as capturing the full entropy of
the conditional distributions are of a great challenge for current cGANs.

Most cGANs derive from the basic generator–discriminator architecture. By
adding conditional information to both the generator and the discriminator,
cGANs can control some characteristics of the generated images. The most
straightforward way to incorporate class label information is to directly con-
catenate the label vector with the latent vector in the generator and then to
concatenate the conditional information with the latent features in the discrim-
inator [12]. On the other hand, incorporating a pixel-level mask label requires
special design of the networks to preserve the fine-grained texture details while
satisfying the mask constraint [8].

In this paper we propose a novel approach to improve the generation of
realistic high-resolution medical images with semantic control. We use a U-Net
[16] style generator that takes both a latent vector (Gaussian noise vector) and
semantic mask. Our generator first perform embedding of the mask input and
then concatenate the mask embedding vector to the latent noise vector as the
input of the feature projection path. The mask is an image providing constraints
and could be an edge map, a segmentation map, a gradient field, etc.

We summarize our contributions as follows:

1. We propose to use mask embedding in semantic cGANs that takes both a
mask and a random latent vector as the input. With this novel structure we
can generate highly stochastic images with fine-grained details.

2. We apply the proposed approach to a medical image synthesis task, and gener-
ated realistic high-resolution images. Specifically we synthesize mammograms
with a binary mask that indicates the breast shape. To our best knowledge
this is the first work that can generate realistic high-resolution mammograms
with semantic control.

2 Motivation

The ability to synthesize FFDM images with cancer lesions in a controlled fashion
is greatly desired by the medical imaging machine learning community. Specifi-
cally, a mask-guided stochastic generator for medical image data augmentation
could potentially yield gains in detection and classification algorithms given the
low occupancy of pathology related pixels in most medical imaging modalities.
To actually realize this gain, the generator needs to (1) have efficient mecha-
nisms for sample space mapping to majority of the available training images
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(e.g. Latent Vector); (2) learn joint distribution of semantic inputs and feature
realizations (e.g. Mask Embedding). This work represent the first stage for our
multi-stage study to synthesize mammogram with lesions. We investigate the
feasibility of synthesizing clinically normal FFDM images with mask constraint.

3 Related Work

Medical image synthesis has been a well-motivated research topic for a long time.
The ability to generate infinite number of realistic looking medical phantom
greatly enables studies such as virtual clinical trials and data augmentation for
computer aided diagnosis algorithms.

Recently many studies have been using GANs to synthesize medical images.
Those methods can be grouped into unconditioned synthesis [6,13] and condi-
tioned synthesis [3,14,15]. There is also a detailed survey of medical image syn-
thesis using GANs [18]. Note that mammogram synthesis using GANs has been
proposed in [11], but their approach focuses on image realism and resolution in
the unconditional setting, hence the shape or other morphological characteristics
of their synthesized mammograms cannot be controlled.

Fig. 1. Proposed architecture with two inputs to the Generator: (1) Mask and (2)
Latent Vector. When doubling the dimension of the networks at beginning of each
training phase, layers at the positions indicated by red boxes are newly initialized
and faded in as described in the progressive training strategy for GAN [9]; For our
without embedding baseline model, the Dense Mask Embedding Layer in the
generator is removed. The latent vector input is also adjusted to a 132-dimensional
vector to maintain the same amount of parameters in the latent projection path for a
fair performance comparison. (Color figure online)
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4 Network Architecture

The challenge to train an image translation model with latent vector input is
to produce latent features that are compatible with the input mask constraint.
In other words, the initial latent projection layer could produce features that
fall outside the manifold constrained by the semantic mask input in the latent
space, resulting in the following deconvolution layers to compensate for this
inefficiency, and eventually leading to model capacity reduction. Our solution is
to pose an additional constraint on the initially projected features by injecting
the mask embedding vector into the input latent vector. This process allows a
more efficient initial feature projection that produces latent features that are
compatible with the mask input, thus preserving the output image quality.

Our model consists of a generator and a discriminator shown in Fig. 1. The
key concept is to perform mask embedding in the generator before the latent
feature projection layer to increase the overall feature projection efficiency. The
generator follows a U-Net style design that can be divided into the mask projec-
tion path and the latent projection path. The discriminator takes the output
of the generator as well as the corresponding mask and produce a probability
score.

The input of the generator’s mask projection path is a 256 × 512 mask (a
binary image in our case). This mask projection path has 7 convolution layers
each with a stride of 2 and depth of 8 features. The output of the mask pro-
jection path is a 32-dimensional vector (mask embedding) and is injected into
the latent vector as the input of the latent projection layer. The latent vector
is a 100-dimensional vector thus the input of the latent projection path is a
132-dimensional vector. Each mask projection feature block (except for the last
one) is then concatenated onto the corresponding latent projection feature block
to complete the U-Net structure. The initial latent feature block is produced by
a dense layer followed by 7 deconvolution layers with stride of 2 and size of 4.
The number of kernels of each deconvolution layer starts from 128 and decreases
by a factor of 0.8 (rounded to the nearest integer) in each following layer. The
output of the projection layer is the synthesized image.

5 Progressive Training

We used the progressive training strategy for GAN [9]. The training was divided
into 7 phases. In each phase we doubled the network dimensions and gradually
faded in the newly added layer. The model was grown from the resolution of
4×8 to 256×512. We stopped at this resolution due to hardware limitation. We
adjusted the batch size and learning rate for each phases so that the standard
WGAN-GP [5] converging mechanism can be achieved. We trained our model on
three 1080 Ti for approximately a week to reach the maximum resolution. For
each phase we train the network until the discriminator loss converges and no
further observable improvement is made on the synthesized images. More details
can be found in our open sourced implementation.
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6 Experiments

6.1 Dataset

We used the mammography dataset collected from our institution. The dataset
contains 39,778 negative screening subjects. Each exam has at least 4 images
(Craniocaudal view and Mediolateral oblique view for each side of the breast),
resulting in 443,556 images in total. The pixel values are truncated and normal-
ized to [0, 1] using the window level settings provided by the DICOM header.
Each image was padded and resized to 256×512. For each mammography image
a binary skin mask is generated using Otsu thresholding, where 1 denotes breast
region and 0 denotes background. For comparison against the pix2pix model [8],
we extracted the edge map of each mammography images using Sobel filters in
both horizontal and vertical direction and then overlay the texture map with
the corresponding skin mask.

6.2 Results

Several example results using randomly sampled skin masks and latent vectors
are shown in Fig. 2. We compared our proposed model with the pix2pix model
and our baseline model without embedding mechanism. Our proposed model
generates mammograms with much more realistic texture details.

6.3 Comparison to Pix2Pix Method

We compare the results of our approach with the well-known pix2pix image
translation model that takes only semantic mask as input. Results are shown
in Fig. 3(c). Due to the image transformation nature of this model, our first
approach using a smooth skin mask as the only input failed to generate any
meaningful texture details. In order to evaluate the response of pix2pix model
to perturbation of mask input, we constructed the texture map as mentioned in
Sect. 6.1. Even trained on masks with the prior information of high frequency
tissue structures, the standard pix2pix model still under performs our proposed
model in terms of fine-grained texture details and variety of parenchymal pat-
terns generated. The pix2pix result lacks stochasticity in which a very limited
mapping between mask input space and sample space is possible, thus limit-
ing the output variation. Moreover, the same problem limits training stability
since the model is forced to map similar input binary patterns with drastically
different realization of tissue structures without having the proper mechanism.

6.4 Comparison to Baseline Method

We explore the effect of mask embedding mechanism by removing the mask
embedding layer from our proposed model and training this baseline model from
scratch. The design of our baseline model is equivalent to Tub-GAN [19]. The
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Fig. 2. (a) Input mask. (b) Original mammogram. (c), (d), (e) Generated mammo-
grams using our mask embedding approach with different random latent vectors.

latent input vector is adjusted to be 100+32 so that the total number of param-
eters in the latent projection layer stays the same to our proposed model. The
exact same training schedule for our proposed model is repeated. The results
are shown in Fig. 3(d). The generated images have more high resolution details
compared to pix2pix mode, but lack parenchyma complexity and usually contain
obvious artifacts formed during up-sampling. This is an indication of model los-
ing capacity due to the constraint posed by the mask input. A larger collection
of comparison images can be found in supplementary material.
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Fig. 3. (a) Input mask. (b) Original mammogram. (c) Synthesized mammogram using
Pix2Pix. (d) Synthesized mammogram using our approach without mask embedding.
(e) Synthesized mammogram using our approach with mask embedding.

6.5 Evaluation

For natural image generation there have been several objective metrics to mea-
sure the performance of the generative models such as Inception Score [17], Mode
Score [2] and Fréchet Inception Distance [7], in medical image generation how-
ever there is no such metric available. Thus we design a reader study and let the
expert radiologists assess the realism and quality of the synthesized results.
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We randomly picked 50 real breast masks and generated mammograms using
the three different approaches: pix2pix, our approach without mask embedding
and our approach using mask embedding. All images were presented to read-
ers in random order. Two expert radiologists were asked to rate each mammo-
gram using 5 scores (5: definitely realistic, 4: realistic, 3: neutral, 2: fake, 1:
definitely fake). The averaged score for real mammograms, synthesized results
using pix2pix, synthesized results using our approach without and with mask
embedding are 3.78, 1.08, 1.34, 2.38 respectively. Although subjective, these
numerical results confirm that our approach with mask embedding provides a
considerable improvement in realism.

7 Conclusion

We have proposed to use binary mask constraint to guide image synthesis while
preserving output variety and fine-grained texture details. The challenge was to
compensate for the generator capacity reduction caused by the pixel-level mask
constraint. Our solution is to use mask embedding to further guide the initial
projection of latent features to increase the probability of latent features falling
within the manifold constrained by the mask. Our approach enables the semantic
control of the synthesized mammograms while ensuring the fine-grained texture
details are looking realistic. This technique can potentially be applied to other
high resolution medical image modalities as well as natural images.
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