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Abstract. Contour integral based rational filter leads to interior eigensolvers for non-Hermitian
generalized eigenvalue problems. Based on the Zolotarev’s problems, this paper proves the asymptotic
optimality of the trapezoidal quadrature of the contour integral in terms of the rational function
separation. A composite rule of the trapezoidal quadrature is derived. Two interior eigensolvers are
proposed based on the composite rule. Both eigensolvers adopt direct factorization and multi-shift
generalized minimal residual method for the inner and outer rational functions, respectively. The
first eigensolver fixes the order of the outer rational function and applies the subspace iteration to
achieve convergence, whereas the second eigensolver doubles the order of the outer rational function
every iteration to achieve convergence without subspace iteration. The efficiency and stability of
proposed eigensolvers are demonstrated on synthetic and practical sparse matrix pencils.

Key words. Generalized eigenvalue problem; non-Hermitian matrix; contour integral; trape-
zoidal quadrature; optimal rational approximation; Zolotarev problem.

1. Introduction. We aim to solve the large-scale interior eigenvalue problem
for non-Hermitian matrices. Such problems arise from many fields including but
not limited to electronic structure calculations, dynamic system simulations, control
theory, etc. Most of these applications only require part of eigenvalues of interest,
and many of which are interior eigenvalues.

The interior non-Hermitian generalized eigenvalue problem we consider is

Axi = λiBxi, λi ∈ D,(1.1)

where D is the region of interest, matrix pencil (A,B) is regular, and either or both
of A and B is non-Hermitian. The goal is to find all eigenpairs (λi, xi) in the region
D. Once the problem in a D region can be solved, the entire spectrum could be
partitioned into a union of many regions. The interior eigensolver could be applied
to all regions in parallel to obtain the full eigendecomposition.

Methods for non-Hermitian generalized eigenvalue problems have been developed
for decades. The QZ method [9] is a popular one in practice for dense and small-to-
medium scale matrices. When a sparse and large-scale matrix is considered, iterative
methods [7, 17] are preferred. Among iterative methods, many adopt the combina-
tion of a contour-based filter and the subspace iteration, e.g., Sakurai-Sugiura (SS)
method [15] and variants of FEAST method [13, 8]. The original SS method suffers
from numerical instability due to the ill-conditioned Hankel matrix. Then Sakurai
and Sugiura proposes CIRR [4], which uses Rayleigh-Ritz projection to avoid the ex-
plicit usage of the momentum and block version SS method [5]. The number of linear
systems therein is reduced, and so is the order of the Hankel matrix. The FEAST
method originally proposed for Hermitian matrices is extended to non-Hermitian ma-
trices and results in many variants, dual FEAST [6], BFEAST [19], HFEAST [18],
etc. For all the contour-based filters or rational filters in the methods above, the con-
vergence and convergence rate highly depend on the locations and weights of poles.
Although the trapezoidal quadrature leads to a good convergence behavior [6], its
optimality remains unknown for non-Hermitian matrices. In this paper, we discuss
the optimality of the trapezoidal quadrature and its composite rule property. On the
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top of the property, we propose interior eigensolvers for non-Hermitian generalized
eigenvalue problems.

Our contributions in this paper can be summarized in two parts: theoretical
analysis and algorithm design. Theoretically, with the tool of Zolotarev’s problems, we
prove that when the contour is a circle, the inverse power method leads to an optimal
rational seperation for a non-Hermitian generalized eigenvalue problem. The trape-
zoidal quadrature of a contour integral achieves asymptotically optimality in seper-
ation. A composite formula for the trapezoidal quadrature is proposed to facilitate
the later algorithm design. More specially, given a rational function Rk(z) from the
trapezoidal quadrature, we derive the composite formula as Rk(z) = Rk2(T (Rk1(z)))
for k = k1k2 and T (·) being a Möbius transform. In the algorithm design part,
we propose two novel algorithms based on the composite formula of the trapezoidal
quadrature. The first algorithm adopts k1 and k2 as hyperparameters and applies the
subspace iteration with the fixed filter Rk2

(T (Rk1
(z))) to matrix pencils. The inner

rational function Rk1 is implemented with direct matrix factorization, whereas the
outer rational function Rk2 is implemented via the multi-shift generalized minimal
residual method (GMRES). The second algorithm adopts k1 as a hyperparameter
and removes the subspace iteration. The convergence of the second algorithm is guar-
anteed by doubling k2 every iteration until the rational approximation is accurate
enough. Similar to the first algorithm, the inner and outer rational functions are
implemented via direct factorization and multi-shift GMRES, respectively. Thanks
to the nature of multi-shift GMRES, doubling k2 does not significantly increase the
computational cost. Numerical results on both synthetic and practical matrix pencils
demonstrate the efficiency of the two proposed algorithms. Both theoretically and
numerically, the second algorithm is suggested for practical usage.

The rest of this paper is organized as follows. In section 2, we introduce the
basic idea and practical consideration of the contour integral based filter. Later, we
introduce the Zolotarev third and fourth problems with related theorems and the
optimalities of rational function separation in section 3. Two algorithms are proposed
in section 4. Then, numerical experiments demonstrate the efficiency of both proposed
algorithms in section 5. Finally, section 6 concludes the paper.

2. Subspace iteration with rational filter. Subspace iteration with ratio-
nal filter is a class of eigensolvers for interior non-Hermitian generalized eigenvalue
problems (1.1). All eigensolvers in this class use the subspace iteration framework
and adopt various filters, i.e., rational functions with different choices of weights and
poles. These rational filters include various discretizations of the contour enclosing
D, which is the desired region of eigenvalues. In this section, we will first review the
subspace iteration and then discuss contour-based rational filters with various dis-
cretization strategies. Some practical considerations, i.e., the number of vectors and
the number of poles, are discussed in the end.

2.1. Subspace iteration. The general framework of the subspace iteration with
filter iterates between two phases: 1) refining the subspace via filter; 2) solving a
reduced eigenvalue problem in the subspace.

In the first phase, the filter is applied to an approximated basis of the subspace,
and a refined representation of the subspace is obtained. For Hermitian eigenvalue
problems, left and right eigen-subspaces are identical. Hence, only the basis of the
right eigen-subspace is usually refined, and its complex conjugate is used as that of
the left eigen-subspace. However, for non-Hermitian eigenvalue problems, left and
right eigen-subspaces are different. After the right eigen-subspace is refined, an extra
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step is needed to obtain an approximation of the left eigen-subspace. In the second
phase, the original large-scale eigenvalue problem is projected to the left and right
eigen-subspaces and reduced to an eigenvalue problem of a much smaller scale. Then
the small-scale eigenvalue problem is solved by classical dense eigensolvers, which
results in the approximated eigenvalues of the original problem. The approximated
eigenvectors could be calculated as well. Some filters depend on the approximated
eigenvalues, whereas others do not. For filters that do not use the approximated
eigenvalues, the second phase serves as a calculation of the stopping criteria.

Due to the potential ill-conditioned eigenbasis of non-Hermitian matrices, the
generalized Schur vectors could be extracted to represent the eigen-subspaces and
lead to a more stable scheme. Such a subspace iteration idea has been combined
with FEAST for non-Hermitian matrices and results in HFEAST [18]. Let U be the
vectors approximating the right eigen-subspace, i.e., U is the result of applying the
filter. The orthonormal basis of U is denoted as V = orth(U). As in HFEAST [18], the
orthonormal basis of the left eigen-subspace could be constructed as W = orth(AV −
σBV ), where σ is the shift different from the eigenvalues of (A,B). After obtaining
the approximated orthonormal bases of the left and right eigen-subspace, the reduced
generalized eigenvalue problem (W ∗AV,W ∗BV ) is addressed by the QZ algorithm
and yields the generalized Schur form,

P ∗
L(W

∗AV )PR = HA and P ∗
L(W

∗BV )PR = HB ,

where PL and PR are orthogonal matrices, HA and HB are upper triangular matrices.
The approximated eigenvalues are,

λ̃i = (HA)i,i/(HB)i,i,

for i = 1, 2, . . . , s. To obtain the eigenvectors, we further calculate the left and
right eigenvectors of (HA, HB) and denote them as VL and VR respectively. The
approximated left and right eigenvectors of (A,B) are, respectively,

WPLVL and V PRVR.

Algorithm 2.1 Subspace Iteration with Filter

Input: matrix pencil (A,B), region D, number of eigenvalues s, shift σ.
Output: All eigenpairs (λi, xi), λi ∈ D.
1: Generate random Y N×ncol , ncol ≥ s
2: while not converge do
3: U = ρ(B−1A)Y
4: V = orth(U)
5: W = orth(AV − σBV )
6: [HA, HB , PL, PR, VL, VR] = qz(W ∗AV,W ∗BV )

7: λ̃i = (HA)i,i/(HB)i,i
8: Y = V PRVR

9: end while

The overall framework of the subspace iteration in HFEAST [18] with filter ρ(·)
is summarized in Algorithm 2.1. In the rest paper, we adopt the subspace iteration
as in Algorithm 2.1 and focus on the construction of ρ(·).
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2.2. Contour based filter and discretization. The basic idea behind the
filter is to construct a matrix function whose value is close to zero outside the region
D and different from zero inside D. One good choice of matrix functions is the
indicator function of D, which could be constructed via a contour integral enclosing
the region D. The indicator function of D via contour integral admits,

(2.1) f(z) =
1

2πı

∮
Γ

1

ζ − z
dζ =

{
1, z ∈ D
0, z ̸∈ D

,

where Γ is the positively oriented Jordan curve boundary encloses the region D. 1

For a diagonalizable matrix pencil (A,B), i.e.,

AX = BXΛ,

with X being the eigenvectors and Λ is a diagonal matrix with eigenvalues on its
diagonal, the indicator function f(z) applying to matrices becomes

f(B−1A) =
1

2πı

∮
Γ

(ζI −B−1A)−1 dζ

= X

[
1

2πı

∮
Γ

(ζI − Λ)−1 dζ

]
X−1 = X1D(Λ)X

−1,

(2.2)

where 1D(·) denotes the indicator function for region D. In [19], a result similar
to (2.2) is proved, which contributes to the theoretical foundation that the contour
integral works even if the non-Hermitian system is defective.

Various numerical discretizations of the contour integral (2.2) lead to the vari-
ous filters. In many applications, especially non-Hermitian eigenvalue problems, the
contour Γ is circular. In many other applications, the contour could be conformally
mapped to a circle. Hence, in this paper, we will discuss the discretization of contour
integrals for Γ being a circle. When the contour is a unit circle, we could reparame-
terize the circle by eıθ for θ ∈ [0, 2π). The integral (2.1), then, is a one-dimensional
integral and could be numerically evaluated by various quadrature rules. Generally,
the discretized integral with k points could be written as

(2.3) Rk(z) =

k∑
i=1

wi

pi − z
,

where {wi}ki=1 are weights, {pi}ki=1 are poles. For example, when the trapezoidal
quadrature is applied, the integral (2.1) is numerically approximated by

R
(T )
k (z) =

1

k

k∑
i=1

eıθi

eıθi − z
,

where θi =
2(i− 1

2 )π

k . From the form of (2.3), we notice that Rk(z) is a rational
function. Let Rn,m = {P (z)/Q(z) : deg(P (z)) ≤ n,deg(Q(z)) ≤ m} be the set
of rational functions, where P (z) and Q(z) are polynomials and deg(·) denotes the
degree of the polynomial. The discretized contour integral (2.3) is in Rk−1,k.

1In (2.1), we implicitly assume that the eigenvalues of (A,B) do not locate on the boundary of
D.
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When the discretized contour integral applies to matrices, the rational matrix
function yields

(2.4) Rk(B
−1A) =

k∑
i=1

wi(piI −B−1A)−1 =

k∑
i=1

wi(piB −A)−1B.

The matrix function Rk(B
−1A) in (2.4) is used as the filter in Algorithm 2.1.
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Fig. 2.1. Approximation errors to the step function on the complex plane except an annulus
{x : 1/1.1 < |x| < 1.1} for trapezoidal quadrature (left), Zolotarev’s function (middle) and Gauss
quadrature (right). Here 16 poles are adopted for all three rules. The figure shows the approximation
error to indicator function on complex plane.

Among various quadrature rules, the optimal quadrature needs to be decided
based on a criterion. As we will see later, the convergence rate of subspace iteration
mainly depends on the ratio (2.7). Since we do not know eigenvalues in a priori, we
could assume that there is an annulus around the boundary of D as a generalized
eigengap. The inner part and the outer part are,

I = {z : |z| ≤ a}, and O = {z : |z| ≥ b},

where a and b are the radii of the inner and outer parts of the annulus, I contains all
the eigenvalues inside D. Then the criterion is defined as,

(2.5) R =
supz∈O |Rk(z)|
infz∈I |Rk(z)|

.

When the ratio is small, the convergence of the subspace iteration is fast. Hence,
we would like to address the following optimization problem to obtain the optimal
weights and poles for a given k,

(2.6) inf
{wi}k

i=1,{pi}k
i=1

supz∈O |Rk(z)|
infz∈I |Rk(z)|

.

From (2.6), what we want is to separate the values inside and outside by enlarging
the values in I and reducing the values in O at the same time. Following the above
argument, the contour is not necessarily the boundary of D and we can choose any
contour in the annulus,

annu(a, b) = {z : a ≤ |z| ≤ b}.

Moreover, we could discard the concept of contour discretization and view it as a
rational function seperation problem. One could imagine that as b−a becomes larger,
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it is easier to separate the values inside and outside the annulus with rational functions.
The drawback of using a larger b is that more eigenvalues may fall into annu(a, b) and
we do not explicitly know the impact of these eigenvalues on the convergence of the
subspace iteration.

Figure 2.1 illustrates the approximation error to the step function and the cri-
teria ratio R for three numerical discretizations of Rk(z) with 16 poles, namely the
trapezoidal quadrature, Zolotarev fourth function [8] on real axis, and the Gauss quad-
rature. As shown in Figure 2.1, the Zolotarev fourth function on real axis is neither
optimal for non-Hermitian eigenvalue problems in the L∞ sense nor optimal in (2.6)
sense when the inner and outer part no longer defined on real axis. The trapezoidal
quadrature outperforms the other two. As one of the contributions in this paper, we
prove in Theorem 3.5 that trapezoidal quadrature provides the asymptotically optimal
weights and poles for (2.6).

2.3. Practical consideration. Given a discretization rule, the major compu-
tational cost in applying the filter Rk(B

−1A)Y as in (2.4) lies in solving the shifted
linear systems, (piB−A)−1 for i = 1, . . . , k. Such a computational cost is often deter-
mined by the condition number of (piB −A). Since the positions of poles are on the
contour, the condition number is inversely proportional to the eigengap around the
contour, which is in general large in practice. Hence, in most contour based filters,
the shifted linear systems are solved by direct methods, e.g., LU factorization. The
overall computational cost is then divided into two parts: the offline factorization part
and the online solving part (backward substitution). The cost could be rewritten as

Cfactor × k + Capply × k × ncol × niter + o(Capply),

where Cfactor is the cost of a factorization, Capply is the cost of a backward substitution,
k is the number of poles, ncol is the number of columns in Y , niter is the number of
subspace iterations, and o(Capply) = o(Capply(N)) is the rest cost of a lower order
than Capply(N). Throughout the subspace iterations, the tuneable hyperparameters
are k and ncol, and niter is determined by k, ncol, and the stopping criteria in the
algorithm. The dependence of niter on k and ncol could be reflected by the function
value gap of Rk(λi), since we are essentially applying power method with Rk(B

−1A).
Let σ be a permutation of 1, 2, . . . , N , such that

|Rk(λσ1)| ≥ |Rk(λσ2)| ≥ · · · ≥ |Rk(λσN
)|.

Then, the number of subspace iteration niter mainly depends on the ratio,

(2.7) max
i>ncol

|Rk(λσi
)|
/

min
λσi

∈D
|Rk(λσi

)|.

When the ratio is greater or equal to one, then the subspace iteration would suffer
from a divergence issue. When the ratio is smaller than one, the subspace iteration
would converge and the convergence rate depends on the distance between the ratio
and one. The further the distance, the faster the convergence. In the following, we
discuss the practical consideration for the number of vectors ncol and the number of
poles k.

Number of vectors ncol. To extract the entire eigenspace we are interested, it is
necessary that ncol ≥ s. However, the number of eigenvalues in the region D is not
known a priori. Usually, a rough estimation of s, denoted as s̃, is calculated and the
number of vectors is set as ncol = ⌊ρs̃⌋ for ρ being a hyperparameter greater than
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Fig. 2.2. Filled contour plots for trapezoidal quadrature of the contour integral with 4 poles
(Left) and 16 poles (Right). The matrix pair has two desired eigenpairs with eigenvalues being
λ1 = 0 and λ2 = 0.75, and an unwanted eigenpair with eigenvalue being λ3 = 4

√
2eıπ/4. In the left

figure, the function values are |R(T )
4 (λ1)| = 1, |R(T )

4 (λ2)| ≈ 0.7596, and |R(T )
4 (λ3)| = 1. In the right

figure, the function values are |R(T )
16 (λ1)| = 1, |R(T )

16 (λ2)| ≈ 0.9901, and |R(T )
16 (λ3)| = 0.0667. The

white stars indicate the locations of the poles.

one. Since the estimation of s is not in the scope of this paper, we set ncol = ⌊ρs⌋
in all numerical experiments. Even when we have ncol ≥ s, the subspace iteration
may still fail to converge to all the desired eigenpairs. We provide an example of
such cases in Figure 2.2. There are 2 eigenvalues λ1 = 0 and λ2 = 0.75 inside D,
and an eigenvalue λ3 = 4

√
2eıπ/4 outside. As in the Figure 2.2 Left, when 4 poles

are adopted, the function values obey 1 = |R(T )
4 (λ3)| > |R(T )

4 (λ2)| ≈ 0.7596. The
ratio (2.7) is greater than one, and the iteration with two columns would converge
to (λ1, x1) and (λ3, x3) other than desired eigenpairs. The overall subspace iteration
fails to capture all the desired eigenpairs inside D. One way to deal with the issue
is to increase ncol until it covers all eigenvalues whose function values are greater

than R
(T )
4 (λ2) and make the ratio (2.7) smaller than one. Even when convergence is

guaranteed, we may still increase ncol for faster convergence. However, when there
are many unwanted eigenvalues close to the contour, we need to set ncol extremely
large for the subspace iteration to converge. In this case, it would be more efficient
to increase the number of poles.

Number of poles k. In many applications, for stable convergence, adding poles
is an inevitable choice. When more poles are added, i.e., f(z) has been discretized
with more points, the numerical approximation of Rk(z) to f(z) is improved. The
ratio (2.7) is guaranteed to be smaller than one even when ncol = s. For example,
as in Figure 2.2 Right, the number of poles is increased from 4 to 16. Then we

have function values |R(T )
16 (λ1)| = 1, |R(T )

16 (λ2)| ≈ 0.9901, and |R(T )
16 (λ3)| ≈ 0.0667,

and the ratio (2.7) becomes |R(T )
16 (λ3)|/|R(T )

16 (λ2)| ≈ 0.0594 away from one. The
subspace iteration would converge efficiently even when ncol = 2. Adding the number
of poles leads to a more accurate approximation to f(z), and, hence, a smaller ncol

and niter. The drawback of increasing the number of poles is the increasing number of
matrix factorizations, which is computationally more expensive than that of solving
(the backward substitution). When a massive amount of computational resources are
available, all k poles could be calculated independently and in parallel. Hence, in
practice, we would increase k to benefit most from computational resources and then
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increase ncol to have an efficient and robust subspace iteration algorithm.

3. Asymptotically optimal contour discretization. This section shows that
the trapezoidal quadrature is an asymptotically optimal discretization for a disk re-
gion D, i.e., an asymptotically optimal solution to the min-max problem (2.6). In
subsection 3.1, Zolotarev third and fourth problems are reviewed. The former serves
as the theoretical foundation of the asymptotic optimality of trapezoidal quadrature.

Then subsection 3.2 derives that R
(T )
k (z) = R

(T )
1 (zk), which serves as a compact form

for R
(T )
k (z). For the sake of notations, we abuse Rk(z) = R

(T )
k (z) in the rest paper,

which represents the trapezoidal quadrature of the unit circle contour whose center is
located at the origin. When the radii of the contour is r and the center is c, we denote
the discretization as Rc,r,k(z). Finally, we prove that the trapezoidal quadrature is an
asymptotically optimal contour discretization for a disk region D in subsection 3.3.

3.1. Zolotarev problems. We introduce the Zolotarev third and fourth prob-
lems with their related theoretical results [12, 16]. Zolotarev third problem proposes
optimal rational functions for the separation of two regions, whereas Zolotarev fourth
problem proposes the optimal uniform approximation to the sign function on two sym-
metric intervals. Since contour discretization admits the form of a rational function,
it is natural to bridge the contour discretization and Zolotarev problems.

The Zolotarev third and fourth problems are given in Definition 3.1 and Defini-
tion 3.2, respectively.

Definition 3.1. Let E and G be two disjoint regions of C, i.e., E ∩G = ∅. The
Zolotarev third problem is

(3.1) Zk(E,G) = inf
r∈Rk,k

supz∈E |r(z)|
infz∈G |r(z)|

.

Definition 3.2. Let 0 < ℓ < 1. The Zolotarev fourth problem is

inf
r∈Rk,k

∥sign(x)− r(x)∥L∞([−1,−ℓ]∪[ℓ,1]).

Fig. 3.1. Regions in Zolotarev third problem when E and G are symmetric disks.

The Zolotarev third problem tends to find a rational function that separates E
and G most. The Zolotarev fourth problem in a special case of the third problem with
the region E = [−1,−ℓ] and G = [ℓ, 1]. It can be shown that the Zolotarev third prob-
lem and Zolotarev fourth problem are equivalent via a Möbius transform [12]. The
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explicit solution to Zolotarev fourth problem is adopted in [8] to construct an inte-
rior eigensolver for Hermitian eigenvalue problems. More results about the Zolotarev
fourth problem can be find in [12]. When E and G are symmetric disks as in Fig-
ure 3.1, the solution to Zolotarev third problem is explicitly given in Theorem 3.3.
Theorem 3.3 claimed in this paper takes a different parameterized form of that in [16].

Theorem 3.3. Let S = {z ∈ C : |z − 1+ℓ
2 | ≤ 1−ℓ

2 }, 0 < ℓ < 1. Then the rational
function

r
(Z)
k (z) =

(
z −

√
ℓ

z +
√
ℓ

)k

,

attains the infimum of the Zolotarev third problem Zk(S,−S) and the infimum equals

to ( 1+
√
ℓ

1−
√
ℓ
)−2k.

The explicit solution to Zolotarev third problem as in Theorem 3.3 is the key to
prove the asymptotical optimality of the trapezoidal quadrature for contour integral.
The rational function in Theorem 3.3 is referred as the Zolotarev function in the rest
paper.

3.2. Compact form for Rk(z). In order to connect the Zolotarev function and
the trapezoidal quadrature of the contour integral, and derive the composite formula
in section 4, we establish an equality relation between Rkm(z) and Rk(z

m). The
relation heavily relies on the symmetry of trapezoidal quadrature on the circle.

Let us start with toy cases k = 2, 4. The trapezoidal quadrature of unit circular
contour with two poles, R2, could be rewritten as

R2(z) =
1

2

(
e

ıπ
2

e
ıπ
2 − z

+
e

3ıπ
2

e
3ıπ
2 − z

)
=

1

2

2eıπ

eıπ − z2
=

1

1 + z2
= R1(z

2).

Here we use the symmetry of poles and weights with respect to the origin to derive
the compact form of R2(z) and find that R2(z) is equivalent to R1(z

2). Let us further
derive the compact form of R4(z),

R4(z) =
1

4

(
e

ıπ
4

e
ıπ
4 − z

+
e

7ıπ
4

e
7ıπ
4 − z

+
e

3ıπ
4

e
3ıπ
4 − z

+
e

5ıπ
4

e
5ıπ
4 − z

)
=

1

2

(
e

ıπ
2

e
ıπ
2 − z2

+
e

3ıπ
2

e
3ıπ
2 − z2

)
= R2(z

2) = R1(z
4),

where, in the second equality, we combine the first two and last two terms, and in
the last equality, we adopt the compact form of R2(z). From the derivation of the
compact forms of R2(z) and R4(z), we could directly extend the derivation to obtain
the compact form of Rk(z) = R1(z

k) for k = 2m, m ∈ N+. Fortunately, the compact
form holds for any k ∈ N+. The result is summarized in Lemma 3.4.

Lemma 3.4. For all k ∈ N+, let k roots of zk = −1 be σ
(k)
i for i = 1, . . . , k. Then

the compact form of Rk(z) admits,

(3.2) Rk(z) =
1

k

k∑
i=1

σ
(k)
i

σ
(k)
i − z

=
1

1 + zk
= R1(z

k).

Proof. We first prove two equalities, (3.3) and (3.4), and then derive the compact
form of Rk(z).
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The k roots of the k-th degree polyWnomial zk + 1 are abused as σi for i =
1, 2, . . . , k. A k-th order polynomial with k roots takes form, ak

∏k
i=1(z − σi), where

ak is the coefficient in the leading order. Comparing with the leading order coefficient
in zk + 1, we know ak = 1 and have,

(3.3) zk + 1 =

k∏
i=1

(z − σi).

Then we prove the second equality,

(3.4) − 1

k

k∑
i=1

σi

k∏
j=1,j ̸=i

(z − σj) = 1.

The left-hand side of (3.4) is a (k − 1)-th degree polynomial. For the equality (3.4)
to hold, we only need to check the equality on k different points. Specially, we check
that on σi for i = 1, . . . , k and obtain,

−σi

k

k∏
j=1,j ̸=i

(σi − σj) = −σi

k
lim
z→σi

zk + 1

z − σi
= −σi

k

kσk−1
i

1
= −σk

i = 1,

where the first equality is due to (3.3) and the continuity of (zk + 1)/(z − σi), the
second equality comes from the L’Hopital rule of complex functions, and the last
equality holds since σi is a root of zk + 1.

Finally, we derive the compact form of Rk(z) as in Lemma 3.4.

Rk(z) =
1

k

k∑
i=1

σi

σi − z
=

− 1
k

∑k
i=1 σi

∏k
j=1,j ̸=i(z − σj)∏k

i=1(z − σi)

=
1∏k

i=1(z − σi)
=

1

zk + 1
= R1(z

k),

where the second equality adopts (3.4) and the fourth equality adopts (3.3).

A related compact form without detailed derivation could be found in [5]. The
compact form Lemma 3.4 could be further generalized to Rc,r,k(z) and results the
compact form,

Rc,r,k(z) =
1

1 + ( z−c
r )k

.

3.3. Optimal solution and the asymptotic optimality of trapezoidal
quadrature. In this section, we prove that, if we know the desired spectrum ex-
plicitly, the rational function behind the inverse iteration achieves the optimal of
(3.1) for E = O and G = I. On the other hand, the rational function Rk(z) from
the trapezoidal quadrature discretization of the contour integral achieves asymptotic
optimality of (3.1), i.e., the ratio R for Rk(z) decays in the same rate as that of the
optimal rational function up to a constant prefactor 2.

Theorem 3.5. The rational function

(3.5)

(
1

z

)k
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achieves the infimum of the min-max problem (3.1) for E = O and G = I. And the

infimum equals to
(
a
b

)k
.

Proof. We address Zolotarev third problem with region I and O, i.e., Zk(O, I).
Define a Möbius transform T (z) = γ z−α

z−β such that

T (−b) = 1, T (−a) = −1, T (a) = −ℓ, T (b) = ℓ.

The parameters γ, α, β, and ℓ are determined by a and b. They satisfy

α =
√
ab, β = −

√
ab, γ =

√
b−

√
a√

b+
√
a
, ℓ =

(√
b−

√
a√

b+
√
a

)2

.

It can be verified that T (I) = −S and T (O) = S for S in Theorem 3.3. Then the

composition of the Möbius transform and the Zolotarev function r
(Z)
k (T (z)) achieves

the infimum of Zk(O, I) and is denoted as,

(3.6) R
(A)
k (z) = R

(Z)
k (T (z)) =

(
1

z

)k

.

The infimum of I is taken when |z| = a and the supremum of O is taken when |z| = b.

Then the infimum of the ratio is
(
a
b

)k
.

Theorem 3.5 gives the optimal rational function in solving (2.6). The rational
function z−k therein combined with subspace iteration corresponds to the well-known
inverse power method. Further, from Theorem 3.5, the radius of D or the diameter
of the annulus is not included in the optimal rational function. Hence, we conclude
that, in the sense of convergence rate, the optimal interior eigensolver is the inverse
power method if we assume the center of the desired region D is explicitly known.

While the optimal rational function z−k only has a pole at the origin and could
not be written in a sum of low-order rational functions form (2.3). The inverse power
method then has to be executed sequentially and could not benefit from the paral-
lelization of distinct poles. In the following, we argue that, although the trapezoidal
quadrature of contour integral is not the optimal rational function, it achieves asymp-
totic optimality in the sense that the ratio R of Rk(z) decays at the same rate as that
of the optimal rational function up to a constant pre-factor of 2.

We now consider that the contour is the boundary of I and the trapezoidal quad-
rature with k points is adopted. By Lemma 3.4, the discretization can be written
as

R0,a,k(z) =
1

1 + ( za )
k
,

where I is a disk centered at the origin with radius a. By maximum modulus principle,
the infimum of I and the supremum of O are taken when |z| = a and |z| = b. In
region I, | za |

k ≤ 1. The absolute value of denominator can be viewed as the distance
between −1 and ( za )

k. By simple computation, the infimum is achieved when z = a.

In a similar way, the supremum of O is achieved when z = k
√
−1b from the fact that

| za |
k > 1 in O. The ratio (2.5) is

R =
2

( ba )
k − 1

∼ 2
(a
b

)k
,
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which asymptotically decays at the same rate as that in Theorem 3.5. The above
discussion is summarized in the following corollary.

Corollary 3.6. The trapezoidal quadrature discretization of the contour integral
on the boundary of G = I results in the rational function

(3.7) Rk(z) =
1

1 + ( za )
k
.

The rational function Rk(z) achieves the ratio R = 2
( b
a )k−1

, which is asymptotically

equal to the infimum of the min-max problem (3.1) for E = O and G = I.

Although the trapezoidal quadrature of the contour integral is not the optimal
rational function for (3.1), the ratio asymptotically achieves the optimal one up to a
constant prefactor 2. Hence, we call the rational function from the trapezoidal quad-
rature of the contour the nearly optimal rational function for (3.1). The advantage of
the trapezoidal quadrature over the optimal rational function is that (3.2) could be
efficiently parallelized in solving the shifted linear systems. Another advantage is as
we will propose next that (3.2) admits a composite rule and benefits from the flexible
trade-off between the number of matrix factorizations and the iterative linear system
solves.

4. Composite rule of trapezoidal quadrature. In this section, we will derive
the composite rule of the trapezoidal quadrature discretization of the contour inte-
gral and propose eigensolvers based on the composite rule. In the eigensolvers, the
composite rule is combined with the multi-shift GMRES to reduce the cost of outer it-
eration. The proposed eigensolver can reduce cost while preserving the asymptotically
optimal ratio R.

4.1. Composite rule. Given a positive integer k and its integer factorization
k = k1k2 for k1 > 1 and k2 > 1, we aim to rewrite the k-th order rational func-
tion Rk(z) as a composition of two k1-th and k2-th rational functions, Rk1

(z) and
R̂k2

(z) = Rk2
(T (z)), where T (·) is a simple transform function. Precisely, the com-

posite function admits, Rk1k2(z) = R̂k2(Rk1(z)) = Rk2(T (Rk1(z)).
We restrict T (·) to be a Möbius transform and require it satisfying T (Rk1(z)) =

zk1 such that the composition with Rk2
(z) becomes obvious. Luckily, we find that

the resulting T (·) is easy to be incorporated into the eigensolver design part.
For a Möbius transform function T (z) admits

T (z) =
az − b

cz − d
,

for a, b, c, d being constant coefficients. According to Lemma 3.4, we have a natural
composite expression as,

Rk1k2
(z) = R1(z

k1k2) = Rk2
(zk1).

If T (Rk1(z)) = zk1 , then directly we have

(4.1) Rk1k2(z) = Rk2(T (Rk1(z))),

which is the desired composite rule.
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Now we determine the coefficients such that T (Rk1
(z)) = zk1 . Substituting

Rk1
(z) = 1

1+zk1
into the expression of T (z), we obtain,

T (Rk1
(z)) =

a− b(1 + zk1)

c− d(1 + zk1)
= zk1

⇐⇒ dz2k1 + (d− c− b)zk1 + (a− b) = 0.

The above equality holds for all z. Hence we have solutions of coefficients satisfying
d = 0 and a = b = −c. These solutions of coefficients lead to the unique Möbius
transform function,

(4.2) T (z) =
1− z

z
.

The only concern for the above derivation is the case z = 0. For rational function
Rk(z), zero is achieved Rk(z) = 0 if and only if |z| = ∞, which is not part of the
spectrum of matrices. Hence z = 0 for T (z) would not cause any trouble in practice
and our composite expression holds for all values of z. In Figure 4.1, the mapping of
Rk1(z) and T (Rk1(z)) are illustrated.
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poles
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poles

Fig. 4.1. We plot the mapping on [−2, 2]+[−2, 2]∗ ı. There are 201 equally spaced points in the
direction of real part and imag part, 40401 points in total. The outer points are those |z| > h = 1.1
and the inner points are those |z| ≤ 1 where the contour is |z| = 1. We fix the figure window at
[−3, 3] + [−3, 3] ∗ ı except for top right figure which is shown at [−2.5, 3.5] + [−3, 3] ∗ ı. Here we let
k1 = k2 = 8 and the poles in all figures are the poles of Rk1k2

(z). The original eigengap is almost
invisible, see top left figure. From top right figure, R8(z) maps the inner part close to 1 while outer
part close to 0 and the poles are mapped on the line Real(z) = 0.5. A more apprent comparison of
pre and post-mapping eigengaps is shown as the difference between top left figure and bottom left
figure. The composite mapping successfully maps the outer part close to 0 and the inner part close
to 1 or modulus greater than 1, see bottom right figure.
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Throughout the above derivation, we conclude that Rk1k2
(z) = Rk2

(T (Rk1
(z))).

A generalized composite rule is given in Theorem 4.1 for domains with various center
c and radius r. In Theorem 4.1, we compose Rk2

(·) and T (·) together and rewrite it
as the sum of first-order rational functions. Such a summation form could later be
used directly in the algorithm design.

Theorem 4.1. Given a positive integer k and its integer factorization k = k1k2,
the rational function Rc,r,k(z) admits the following composite rule,

Rc,r,k(z) = R0,1,k2(T (Rc,r,k1(z))),

where T (·) is the Möbius transform (4.2). When k2 is even, the rational function
Rc,r,k(z) further admits the summation form,

(4.3) Rc,r,k(z) =

k2∑
i=1

ci(Rc,r,k1
(z)− si)

−1Rc,r,k1
(z),

where c
(k2)
i = − 1

k2

σ
(k2)
i

1+σ
(k2)
i

, s
(k2)
i = 1

1+σ
(k2)
i

, and {σ(k2)
i }k2

i=1 are roots of xk2 = −1.

When k2 is odd,

(4.4) Rc,r,k(z) =

k2−1∑
i=1

ci(Rc,r,k1(z)− si)
−1Rc,r,k1(z) +

1

k2
Rc,r,k1(z),

where σ
(k2)
k2

= −1.

Theorem 4.1 could be proved through direct calculation. The detailed proof can
be found in Appendix A. Besides the composite rule, there is a connection between
the poles of Rk(z) and the poles of the composite rule. The poles of the original
rational function are transferred into the poles of the inner operator. The connection
is detailed in Proposition 4.2, whose proof is in Appendix B.

Proposition 4.2. For any p
(k)
i being a pole of Rc,r,k(z), there exist a s

(k2)
j for

1 ≤ j ≤ k2, such that

(4.5) Rc,r,k1(p
(k)
i ) = s

(k2)
j ,

where s
(k2)
k2

could be infinite when k2 is odd.

4.2. Interior eigensolver with subspace iteration. Using Rc,r,k(z) as the
filter in subspace iteration for a matrix pencil (A,B) requires the evaluation of
Rc,r,k(B

−1A)Y for Y being a matrix of size N × ncol. By the composite rule for
Rc,r,k(z) in Theorem 4.1, the evaluation of Rc,r,k(B

−1A)Y could be rewritten as,

(4.6) Rc,r,k(B
−1A)Y =

(
k2∑
i=1

ci(Rc,r,k1
(B−1A)− siI)

−1

)(
Rc,r,k1

(B−1A)Y
)
.

where the operation Rc,r,k1(B
−1A)Y admits,

(4.7) Rc,r,k1(B
−1A)Y =

k1∑
i=1

wi(piB −A)−1BY
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for {wi} and {pi} being the weights and poles of Rc,r,k1
(·).

In (4.6), there are inner and outer parts of rational function evaluations. For the
inner part, as in (4.7), the poles are on the contour and the width of the annulus is
determined by the eigengap, which is small in many practical applications. Hence we
conclude that linear systems piB − A are in general of bad condition numbers. Iter-
ative linear system solvers would often take too many iterations before convergence.
Therefore, a direct solver is adopted for all these linear systems. We pre-factorize
all linear systems and denote them as Ki = piB − A for i = 1, . . . , k1.

2 Once the
factorizations Kis are available, the inner part could be addressed efficiently. The
inner part (4.7) essentially applies a rational filter of the matrix pencil (A,B) and
multiplies it to a matrix Y . Without loss of generality, we treat the inner part as a
matrix or an operator G acting on Y . Since (4.7) could be evaluated efficiently after
the pre-factorization, we know that G could be applied to any Y efficiently.

For the outer part, we first rewrite (4.6) using the operator G,

(4.8) Rc,r,k(B
−1A)Y =

k2∑
i=1

ci(G− siI)
−1Ỹ

for Ỹ = G(Y ). Then it is obvious that (4.8) is in the same form as (4.7) with the
matrix pencil replaced by (G, I). Hence, if we have the explicit matrix representation
for G, we could also apply a direct solver to address (4.8). On the other hand, we
notice that the condition numbers of linear systems in (4.8) are much smaller than
that in (4.7). For linear systems in (4.8), a rational filter with order k1 has already
been applied and the eigengap is enlarged. As shown in Figure 4.1 and also later
numerical experiments, the relative eigengap for (G, I) is much enlarged compared
to that of (A,B). Hence, iterative linear system solvers in this case are expected to
converge fast. Throughout this paper, we adopt GMRES [14] as the default iterative
linear system solver for (4.8) with G been applied as an operator. Recall that GMRES
is a Krylov subspace method. By the shift-invariant property of the Krylov subspace,
all k2 shifts in (4.8) could be addressed simultaneously in the same Krylov subspace,
i.e.,

Kn(G− siI, y) = Kn(G, y),

(G− siI)Vn = Vn(Hn,n+1 − siIn,n+1),

for i = 1, . . . , k2 and Vn denoting the basis of Kn(G, y). The multi-shift GMRES [1]
applies the operator G once per iteration. In all of our numerical experiments, the
multi-shift GMRES converges in less than one hundred iterations, and no restarting
is needed.

Using a direct solver and an iterative solver for the inner and outer part of (4.6),
we obtain an effective algorithm for the rational matrix function filter. Combining this
filter with subspace iteration leads to our eigensolver based on the composite rule of
the contour integral based rational function, where the contour integral is discretized
via the trapezoidal quadrature. Algorithm 4.1 gives the overall pseudocode.

We now estimate the computational cost for Algorithm 4.1. Let Cfactor and Capply

be the computational complexities of the factorization and backward substitution

2Throughout the numerical section of this paper, dense LU factorization is used by default for
dense matrices A and B. If A and B are sparse matrices, we adopt the default sparse LU factorization
methods in MATLAB.
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Algorithm 4.1 Eigensolver: Composite rational function filter

Input: Pencil (A,B), center c, radius r, number of eigenvalues s, shift σ, number of
poles [k1, k2].

Output: the eigenpair (λi, xi) with λi ∈ D.
1: Compute {pi, wi}k1

i=1, {cj , sj}
k2
j=1.

2: for i = 1, · · · , k1 do
3: Pre-factorize piB −A as Ki.
4: end for
5: Construct a function for the operation

G(Y ) =

k1∑
i=1

wiK
−1
i BY.

6: Generate an orthonormal random matrix Y N×ncol with ncol ≥ s.
7: while not converge do
8: Ỹ = G(Y ).

9: Solving Uj = (G− sjI)
−1Ỹ for j = 1, · · · , k2 via multi-shift GMRES.

10: U =
∑k2

j=1 cjUj .
11: V = orth(U).
12: W = orth(AV − σBV ).
13: [HA, HB , PL, PR, VL, VR] = qz(W ∗AV,W ∗BV ).

14: λ̃i = (HA)i,i/(HB)i,i.
15: Y = V PRVR.
16: end while

(solving) of an N ×N matrix. For almost all dense and sparse linear system solvers,
the solving complexity is the same as its memory cost. Hence, Capply is also used as
the memory cost in storing a factorization.

In the preparation phase before subspace iteration, the weights and poles are
computed independent of the matrix, whose computational cost is then O(1). For the
pre-factorization of k1 linear systems, the computation complexity is k1Cfactor and
the memory required is k1Capply.

In the subspace iteration phase, the per-iteration computational cost is domi-
nated by the multi-shift GMRES. In the multi-shift GMRES, there are two parts
of major computational costs, the construction of orthonormal bases for the Krylov
subspace and solving the reduced problems. Since the iteration number for GMRES
is bounded by a small constant, the cost in solving the reduced problems is of lower
order compared to that of the basis construction part. Hence, we only count the

cost for the basis construction part for the multi-shift GMRES. If we denote n
(j,t)
iter

as the GMRES iteration number for j-th column in the t-th subspace iteration, the
dominant computational cost in the GMRES is

T∑
t=1

ncol∑
j=1

n
(j,t)
iter · k1Capply,

where T is the subspace iteration number, k1Capply is the cost in applying G(·) to a
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vector. The leading memory cost is

T
max
t=1

ncol∑
j=1

n
(j,t)
iter ·N.

Table 4.1
Computational and memory complexities of the subspace iteration with the simple rational

filter and the composite rational filter. The simple rational filter is of order k1k2 and the composite
rational filter is of inner and outer order k1 and k2 respectively. Here Cfactor and Capply are
factorization and solving cost for a matrix of size N ×N .

Algorithm
Computation Memory

Pre-Fact Iteration Pre-Fact Iteration

Simple k1k2Cfactor Tncolk1k2Capply k1k2Capply ncolN

Algorithm 4.1 k1Cfactor

T∑
t=1

ncol∑
j=1

n
(j,t)
iter k1Capply k1Capply

T
max
t=1

ncol∑
j=1

n
(j,t)
iter N

Ratio k2
Tncolk2

T∑
t=1

ncol∑
j=1

n
(j,t)
iter

k2
ncol

T
max
t=1

ncol∑
j=1

n
(j,t)
iter

The overall dominant computational and memory costs for Algorithm 4.1 are
summarized in Table 4.1. In the same table, we also list the computational and mem-
ory costs for subspace iteration with k1k2-th order rational filter without using the
composite rule. Another row of ratio is added to indicate the acceleration from Algo-
rithm 4.1. Clearly, both the computation and memory costs in the pre-factorization
phase are reduced by a factor of k2. While the comparison for the subspace iteration
part is less clear. The ratio depends on the iteration numbers of both the subspace
iteration and the multi-shifted GMRES. We emphasize that as the subspace iteration
goes, the columns of Y become closer and closer aligned with the eigenvectors. The

Krylov spaces will converge faster and faster and so is the GMRES, i.e.,
∑ncol

j=1 n
(j,t)
iter

will decrease fast as t increase.

4.3. Composite rule eigensolver without subspace iteration. The above
comparison assumes that we use the same order trapezoidal quadrature with different
implements, where the composite rule substitutes the cost of pre-factorization into the
solving phase. We can also fix the number of pre-factorizations which in most cases
is limited by the memory. Table 4.2 shows the comparison of approximation ratio
and the numbers of applying the filter operator G. The simple rule with subspace
iteration achieves the asymptotically optimal ratio only if both k1 and T are large
enough. While in practice the k1 is often limited due to the expensive memory cost
in storing the factorizations. In the worst case, k1 is limited and not large enough
to make the ratio smaller than 1. On the other hand, for the composite rule, k2
is not limited. Increasing k2, the GMRES iteration number niter would increase as
well. Such an increase in the iteration number is due to the new shifts. However,
as we will show in section 5, niter is not sensitive to k2 and increases mildly. With
k2 large enough, the composite rule will achieve the asymptotically optimal ratio in
approximation.

Importantly, Tc = 1 is sufficient for the composite rule to achieve the target
precision when k2 is sufficiently large. That is a numerically attractive feature of the
composite rule. With this feature, we may discard the subspace iteration and only
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Table 4.2
Convergence rate of and numbers of applying G in a subspace iteration with the simple rational

filter and the composite rational filter. The simple rational filter is of order k1 whereas the composite
rational filter is of inner and outer order k1 and k2 respectively. Here Ts and Tc are the numbers
of subspace iteration for the simple rule and the composite rule.

Algorithm Separation ratio (2.5) Number of applying G

Simple
(

2
( b
a )k1−1

)Ts
Tsncol

Algorithm 4.1
(

2
( b
a )k1k2−1

)Tc ∑Tc

t=1

∑ncol

j=1 n
(j,t)
iter

Algorithm 4.2 2
( b
a )k1k2−1

∑ncol

j=1 n
(j)
iter

increase k2 when needed. Furthermore, the shifts s
(k2)
j are parts of the shifts s

(2k2)
j

and their weights satisfy c
(k2)
j /2 = c

(2k2)
j . Therefore, we propose an algorithm parallel

to Algorithm 4.1 to double k2 sequentially as in Algorithm 4.2.

Algorithm 4.2 Eigensolver: Composite rational function filter without subspace
iteration
Input: Pencil (A,B), center c, radius r number of eigenvalues s, shift σ, number of

poles k1, the initial k2 suggested to be equal to k1, and k̂2 = 0.
Output: Eigenpair (λi, xi) with λi ∈ D.
1: Compute {pi, wi}k1

i=1, {cj , sj}
k2
j=1.

2: for i = 1, · · · , k1 do
3: Pre-factorize piB −A as Ki.
4: end for
5: Construct a function for the operation

G(Y ) =

k1∑
i=1

wiK
−1
i BY.

6: Generate an orthonormal random matrix Y N×ncol with ncol ≥ s.
7: Ỹ = G(Y ), U be a zero matrix of the same size.
8: while not converge do
9: Solving Uj = (G− sjI)

−1Ỹ for j = k̂2 +1, · · · , k2 via multi-shift GMRES with
stored Krylov subspace and update the Krylov subspace.

10: U = U/2 +
∑k2

j=k̂2+1
cjUj .

11: V = orth(U).
12: W = orth(AV − σBV ).
13: [HA, HB , PL, PR, VL, VR] = qz(W ∗AV,W ∗BV ).

14: λ̃i = (HA)i,i/(HB)i,i.
15: Y = V PRVR.
16: k̂2 = k2; k2 = 2k2.
17: Compute {cj , sj}k2

j=k̂2+1
.

18: end while

The key difference between composite rule eigensolvers with and without sub-
space iteration is the 9th line in Algorithm 4.2. We do not need to regenerate the
Krylov subspace from scratch. Instead, we could reuse the Krylov subspace and fur-
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ther expand it if the new shifts require a larger Krylov subspace to converge. When
k2 is doubled, the only cost for shifts in the previous iteration is the recalculation
of the weights, which is negligible. Hence if k2 = K2 is sufficient to achieve the de-
sired accuracy for a given problem, the cost of Algorithm 4.2 starting with k2 = 1 is
almost the same as that starting with k2 = K2 for K2 being a power of two. Com-
paring Algorithm 4.2 with the simple rule, Tc is always one. Although Algorithm 4.2
could be combined with subspace iteration as well, numerically we found it not nec-
essary. Algorithm 4.2 turns the convergence cost of the subspace iteration into the
convergence cost of the multi-shift GMRES. We find that the idea of reusing Krylov
subspace for algorithm design is similar to that in [3], where they use a single Cayley
transform for preconditioning. Instead, we use trapezoidal quadrature with k1 poles
for preconditioning.

5. Numerical experiment. In this section, we will demonstrate the efficiency
and stability of the algorithm we proposed through three experiments. The first exper-
iment shows the advantage of the trapezoidal quadrature discretized contour integrals
over another contour integral discretization, Gauss quadrature. The latter two exper-
iments show the computational benefit of applying Algorithm 4.1 and Algorithm 4.2.
We test some medium-to-large-scale matrices for illustration purposes. This paper
focuses on the design of an efficient filter rather than proposing a novel projection
technique. Hence the projection techniques used in Algorithm 4.1, Algorithm 4.2 and
HFEAST remain identical.

Throughout the numerical experiments, the relative error of eigenpair is defined
as

e(λ̃i, x̃i) =
∥Ax̃i −Bx̃iλ̃i∥2
(|c|+ r)∥Bx̃∥2

,

where c and r is the center and radius of the region D. For the non-Hermitian interior
eigenvalue problem, a phenomenon called ghost eigenvalue often appears. The ghost
eigenvalue is the one that appears as a computed eigenvalue but not of the original
matrix pencil (A,B). The ghost eigenvalue would make the subspace iteration difficult
to converge. There are a lot of practical strategies to address this issue. One of them
as in [19] is setting a tolerance τg, which is much larger than the target relative error τ .
As the iteration goes, the true eigenvalues will converge to a small relative error, while
the ghost eigenvalues will not converge to the same precision. After a few steps, there
is a gap in the relative errors between true eigenvalues and ghost eigenvalues. When
the relative error of an approximate eigenpair (λ̃i, x̃i) inside D is smaller than τg, we
view them as the filtered eigenpairs and denote the number of filtered eigenpairs as
p. When p is not changed and all relative errors of the filtered eigenpairs are smaller
than τ , we terminate the algorithm.

In our experiments, we set τg = 10−2 and τ = 10−8. The direct solver is the
lu function in MATLAB with four outputs under the default setting, which leads to
a sparse LU factorization for sparse input matrices. All programs are implemented
and executed with MATLAB R2022b. All of the experiments are performed on a
server with Intel(R) Xeon(R) Gold 6226R CPU at 2.90 GHz and 1 TB memory. In
performance experiments, we report the single-thread wall time.

5.1. Asymptotically optimal rational filter. First we show the ratio (2.5) for
the trapezoidal quadrature, Gauss quadrature and the optimal ratio in Theorem 3.5.
The numerical results are illustrated in Figure 5.1. Here, we set a = 1 and b = 1.1.
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Fig. 5.1. The approximation ratio for various quadrature rules and pole number ks. The pole
number k ranges from 2 to 128. Trapezoidal quadrature shows the same slope as optimal ratio, while
Gauss quadrature behaves differently.

The infimum of I and supremum of O for Gauss quadrature is not known as a close
form, so we use the discretization of 1000 points in both directions of real and imag
part on [−1.5, 1.5] + [−1.5, 1.5] · ı to esitmate (2.5) of Gauss quadrature. Only even
k is adopted as we perform the Gauss quadrature on the upper semicircle and lower
semicircle separately, but not on the full circle directly. Such a Gauss quadrature
discretization preserves the symmetry and would perform better than the one that
breaks symmetry.

From Figure 5.1, we can find that trapezoidal quadrature always performs better
than Gauss quadrature and shows the same decrease order as the optimal ratio comes
from the result of Zolotarev. While the Gauss quadrature has a different decrease
order from the optimal one.

Now we verify the convergence rate mainly depends on (2.7) via a toy example. On
the same region as Figure 5.1, the eigenvalues of test matrices are always keeping four
points that the infima of I and suprema of O for trapezoidal and Gauss quadrature
is achieved. We had 16 random eigenvalues inside the circle |z| = 1/b and had
80 random eigenvalues on the circle |z| = b · 1.01. The eigenvectors matrices are
X = X1 + ıX2, where X1 and X2 are standard Gauss random matrices. We adopt
ncol = 20, which means the ratio (2.7) is exactly (2.5). We denote k = 16, 32 and set
the limit of subspace iteration t to be 50. When the number of poles is 16, the ratios
of trapezoidal quadrature and Gauss quadrature are 0.5563 and 1.0685, respectively.
In this case, the Gauss quadrature fails to capture all the eigenvalues in O while
trapezoidal quadrature works. The residual shown is the maximum relative error of
filtered eigenpairs, i.e., the approximated eigenpairs whose relative errors are smaller
than τg.

We remark that the convergence behavior depends on the distribution of eigen-
values. Our analysis in section 3 views the desired spectrum and undesired spectrum
as a disk and the complement of a disk. While the eigenvalues of a matrix are discrete
points in these regions. It could be the case that the discrete eigenvalues avoid all bad
areas in both the numerator and denominator of (2.5) with Gauss quadrature and
have a small ratio R. In such a case, the rational filter with Gauss quadrature could
outperform the rational filter with trapezoidal quadrature for some matrices. While
without prior knowledge of the distribution of eigenvalues, the trapezoidal quadrature
based filter is a near-optimal choice.
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(a) (b)

Fig. 5.2. (a) the convergence behavior of trapezoidal quadrature and Gauss quadrature. The
points on the line are the median of the residuals at each subspace iteration and the patch parts state
the 20-80 quantile of the residuals. (b) one case for Gauss quadrature with 16 poles, it fails to capture
all the eigenpairs inside even after 50 subspace iterations. Green points are real eigenvalues. The
blue points and red points are the approximated eigenvalues that come from trapezoidal quadrature
and Gauss quadrature.

5.2. Composite rule with subspace iteration. The numerical experiment
in this section is for Algorithm 4.1, where we set k1 = k2 = 8 and compare the
performance against HFEAST (the subspace iteration with a filter with 64 points).
The composite rule can achieve the same accuracy and convergence rate in subspace
iteration as that of the simple rule. The composite rule outperforms the simple rule
when the cost of factorizations is much more expensive than the cost of solving.

The class of non-Hermitian generalized eigenvalue problems comes from the model
order reduction tasks [2, 11] in the circuit simulation [10]. Matrices are constructed
based on quasi-two-dimensional square power grids of size nx × nx × 10. The non-
Hermitian matrix pencil is (G,C) taking the block form as,

G =

[
G11 G12

G21 0

]
, C =

[
Cc 0
0 L

]
.

In particular, G11 represents the conductance matrix as G11 = Lnx
⊗Inx

⊗I10+Inx
⊗

Lnx
⊗ I10 + 1

10Inx
⊗ Inx

⊗ L10, where Ln is a weighted one-dimensional Laplacian
matrix of size n× n as

Ln =
n

100


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1


n×n

and In is an identity matrix of size n × n. The off-diagonal blocks of G admit
G12 = −G⊤

21 ∈ R10n2
x×(20+2n2

x) with entries being ±1 or zero. The first 20 columns
of G12 correspond to 20 input ports at (·, 1, 1) and (·, nx, 10) two edges, where the
corresponding rows have a one. The later 2n2

x columns of G12 correspond to induc-
tors. We uniformly randomly pick 2n2

x interior nodes from grid nodes and add an
inductor with their neighbor nodes on the same layer. The corresponding G12 part
is the incidence matrix of the inductor graph. Matrix L is a diagonal matrix of size
20+2n2

x. The first 20× 20 block of L is zero. The later 2n2
x × 2n2

x block has diagonal
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entries uniformly randomly sampled from [0.5, 1.5] · nx · 10−4 being the inductance of
inductors. The submatrix Cc represents capacitors in the circuit. We add grounded
capacitor with 10−3 capacitance for each node, which means Cc is a diagonal matrix
whose elements are all 10−3. The matrix patterns of G and C are shown in Figure 5.3
for nx = 10.

0 500 1000
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1000

0 500 1000

0

500

1000

(a)

-4000 -2000 0
-4000

-2000

0

2000

4000

(b)

Fig. 5.3. (a) Patterns of G and C when nx = 10; (b) Eigenvalues distribution.

Table 5.1
Matrix information. Columns show sizes, number of nonzeros (nnz) of the G + C matrix for

various nx. The centers and radiuses of target regions are included and each encloses 20 eigenvalues.
The last column includes the runtime ratio of matrix factorization and solving.

nx Size nnz (c, r) ratio

10 1,220 7,440 (−260 + 1000ı,115) 33.706
100 120,020 776,040 (−100 + 23ı,3) 47.903
200 480,020 3,112,040 (−14.5 + 27ı,7) 71.119
400 1,920,020 12,464,040 (−12 + 26ı,6) 118.037

Table 5.1 lists detail information about matrices used in our numerical exper-
iments as well as their target regions. The last column of Table 5.1 includes the
runtime ratio of the matrix factorization and solving, where the solving runtime is
the averaged cost of backward substitutions on a single vector. In all cases, there are
20 eigenvalues in their target regions and we adopt ncol = 24. Reference eigenval-
ues are calculated by eigs in MATLAB. The stopping criteria of GMRES is 10−9.
Numerical results are reported in Table 5.2. The italic values therein are estimated
numbers since the simple rule runs out of memory for those settings. The convergence
behaviors are illustrated in Figure 5.4.

The composite rule establishes a trade-off between the number of matrix factor-
izations and the number of solving in GMRES. When setting k2 = 1, the composite
rule falls back to the simple rule. Table 5.2 shows a comparison of the simple rule and
the composite rule in two folds: runtime and memory. As shown in the last column
of Table 5.1, the runtime ratio between the factorization and the solving grows as
the matrix size increases, which is due to the fact that the matrix factorization is
of higher complexity compared to that of the solving. Hence, reducing the number
of factorizations as in the composite rule would be beneficial. However, as shown in
Table 5.2, the simple rule outperforms the composite rule in runtime since the solving
dominates the total runtime. When the matrix size further increases, we would see
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Table 5.2
Runtime (second) of the simple rule and the composite rule for matrices in Table 5.1. Italic

values are estimated due to the out-of-memory limit. Comp means the composite rule.

nx
total factorization solving

Simple Comp Simple Comp Simple Comp

10 1.7× 100 6.0× 100 6.2× 10−1 7.0× 10−2 1.3× 100 4.8× 100

100 1.0× 103 2.6× 103 4.1× 102 5.1× 101 6.2× 102 2.4× 103

200 6.8× 103 1.3× 104 3.4× 103 4.2× 102 3.4× 103 1.2× 104

400 4 .8 × 10 4 7.1× 104 3 .0 × 10 4 3.7× 103 1 .8 × 10 4 6.4× 104

1 2 3 4 5
10-10

10-5

Composite

Simple

1 2 3
10-10

10-5 Composite

Simple

1 2 3

10-5

Composite

Simple

Fig. 5.4. Convergence of the simple rule and the composite rule.

the composite rule outperforms the simple rule in runtime. Regarding the memory
cost, the simple rule costs about k2 times more than that of the composite rule. In
this example, we find that the simple rule with nx = 400 already exceeds the memory
limit of our computing platform, whereas the composite rule could solve eigenvalue
problems with nx = 400 or even larger.

Figure 5.4 shows that the composite rule converges identically as that of the
simple rule. This indicates that both the GMRES and the direct solver achieve suffi-
ciently good accuracy. In most cases we have tested, the subspace iteration converges
effectively, i.e., usually in a few iterations.

5.3. Composite rule without subspace iteration. This experiment aims to
show that with large k2, the composite rule will converge without subspace iteration,
and the GMRES iteration number does not increase dramatically when k2 increases.
Such an observation means the strategy doubling k2 each time in Algorithm 4.2 would
be affordable compared to the case with optimal k2. Throughout this section, we reuse
matrix pencils in subsection 5.2. We perform three algorithms in this section: the
simple rule with k = 8, the composite rule with k1 = 8 and various choices of fixed
k2 (Algorithm 4.1), and Algorithm 4.2 with k1 = 8. Also, various choices of ncols are
explored.

Table 5.3 reports the runtime of the simple rule and Algorithm 4.2, and Figure 5.5
illustrates the relative runtime of Algorithm 4.1 for various k2. The relative runtime
of Algorithm 4.2 could be read from Figure 5.5 from those first triangle marks at k2
being a power of two.

In Table 5.3, all three choices of ncol overestimates the actual number of eigen-
values in the region. The simple rule with a fixed k = 8 fails to converge when ncol is
not sufficiently large. In contrast, Algorithm 4.2 converges in all scenarios. Based on
this experiment and other experiments we tried but not listed in the current paper,
the convergence of the simple rule is sensitive to the choice of two hyperparameters,
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Table 5.3
Runtime (second) of the simple rule and Algorithm 4.2. Notation “inf” denotes the case where

target eigenpairs are not all captured.

nx
ncol = 21 ncol = 22 ncol = 24

Simple Composite Simple Composite Simple Composite

100 inf 9.9× 102 1.3× 103 1.1× 103 9.8× 102 1.1× 103

200 inf 5.3× 103 inf 5.5× 103 6.9× 103 6.0× 103

400 7.2× 104 3.1× 104 4.4× 104 3.1× 104 3.1× 104 3.4× 104

1 8 16 32 64
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0.8
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Fig. 5.5. Relative runtime of Algorithm 4.1 with k1 = 8 and various k2. The star marks denote
those subspace iterations converge in more than one iteration, whereas the triangle marks denote
those without subspace iteration. When k2 = 1, Algorithm 4.1 is equivalent to the simple rule.

k and ncol. While the convergence of Algorithm 4.2 is not sensitive to the choice of
k1 and ncol.

3 In the worst-case scenario, when the given region is enclosed by many
unwanted eigenvalues, mildly increasing ncol would not resolve the convergence issue
in the simple rule. However, Algorithm 4.2 can converge robustly. When both the
simple rule and Algorithm 4.2 converge, we notice that Algorithm 4.2 outperforms the
simple rule for small ncol. When ncol increases, these two methods become comparable
on runtime.

Figure 5.5 explores the optimal choice of k2 without subspace iteration, i.e., the
first triangle marks on each curve. We find that the optimal k2 is not necessary
2pk1 as in Algorithm 4.2. Besides the factorization cost, the dominating computing
cost of the composite rule is the multi-shift GMRES iterations, i.e., the number of
applying G (4.6). Increasing k2 would add more shifts to the multi-shift GMRES but
not necessarily increase iteration number, and the extra cost of orthogonalization is
negligible compared to that of applying G. In all curves in Figure 5.5, we observe that,
after their first triangle marks, the relative runtime mostly stays flat and increases
extremely slowly. Hence, even if Algorithm 4.2 is not using the optimal k2, the
runtime of Algorithm 4.2 is almost the same as that with optimal k2. We conclude
that Algorithm 4.2 is an efficient and robust eigensolver and is more preferred than
Algorithm 4.1.

Remark 5.1. We remark on the hyperparameter choices in Algorithm 4.2. Given
a matrix pencil and a region, an overestimation ncol of the number of eigenvalues
is required. If we perform factorizations and solvings sequentially, we may need to
choose a proper k1 depending on whether factorizations are more expansive than that
of solving. In the view of parallel computing, the k1 factorizations and solvings are

3The requirement for ncol is that ncol is an overestimation of the number of eigenvalues in the
region.
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ideally parallelizable. Hence, we would set k1 as large as possible to fully use the
computation resource and reduce the GMRES iterations.

6. Conclusion. This paper finds the optimal separation rational function via
the Zolotarev function. The optimal rational function leads to the traditional in-
verse power method in numerical linear algebra. Discretizing the contour integral
with the standard trapezoidal quadrature results in an asymptotically optimal separa-
tion rational function. The numerical algorithm based on the trapezoidal quadrature
(the simple rule) admits natural parallel computing property, while the inverse power
method is sequential. Hence, the simple rule would benefit more from modern multi-
core computer architecture. Further, we show the composite rule of the trapezoidal
quadrature, i.e., Rk1k2(z) = Rk2(T (Rk1(z))) for Rk(·) being the simple rule of order
k and T (·) being a simple Möbius transform.

Based on the composite rule, we propose two eigensolvers for the generalized non-
Hermitian eigenvalue problems, Algorithm 4.1 and Algorithm 4.2. Both algorithms
adopt direct matrix factorization for the inner rational function evaluation and multi-
shift GMRES for the outer rational function. Compared to the simple rule with the
same number of poles, both composite-rule-based algorithms reduce the number of
factorizations and reduce the memory requirement in solving eigenvalue problems.
This is of fundamental importance when matrices are of large scale. The difference
between the two composite algorithms is the subspace iteration. In Algorithm 4.1,
both k1 and k2 are hyperparameters, and the algorithm adopts the subspace iteration
to converge to desired eigenpairs. In contrast, Algorithm 4.2 is designed without sub-
space iteration. Algorithm 4.2 adopts k1 as a hyperparameter and gradually increases
k2 until the rational function approximation is accurate enough and the algorithm
converges to desired eigenpairs without subspace iteration. As k2 increases in Algo-
rithm 4.2, by the property of multi-shift GMRES, the number of GMRES iterations,
i.e., the number of applying G, increases very mildly. Hence, compared to the simple
rule and Algorithm 4.1, Algorithm 4.2 is a robust and efficient eigensolver.

We demonstrate the efficiency of proposed algorithms via both small-scale and
large-scale, synthetic and practical generalized non-Hermitian eigenvalue problems.
Numerical results show that Algorithm 4.1 outperforms the simple rule only if the
matrix factorization is much more expensive than the solving. The convergence of
Algorithm 4.2 is not sensitive to hyperparameter ncol and k1. In terms of the runtime,
Algorithm 4.2 either outperforms or is comparable to the simple rule. A suggestion
for the hyperparameter choices of Algorithm 4.2 is also provided based on both the
analysis and numerical results.

Acknowledgement. This work is supported in part by the National Natural Sci-
ence Foundation of China (12271109) and Shanghai Pilot Program for Basic Research
- Fudan University 21TQ1400100 (22TQ017).

Appendix A. Proof of Theorem 4.1.

Proof. We can use the equation z = ry + c to transfer the contour discretization
on an arbitrary circle into the case of the unit circle around origin. The rational
function then admits,

(A.1) Rc,r,k(z) = R0,1,k(y).

Combining with the composite rule (4.1), we have

(A.2) Rc,r,k(z) = R0,1,k1k2
(y) = R0,1,k2

(T (R0,1,k1
(y))) = R0,1,k2

(T (Rc,r,k1
(z))).
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Table C.1
Number of solvings and GMRES iteration in the simple rule and the composite rule. Italic

values are estimated due to the out of memory limit.

nx
Simple Composite

Solving niter Solving

10 [1536,1536,1536,1536,1536] [38,32,30,30,30] [7296,5824,5208,4888,4160]
100 [1536,1536,1536] [39,33,32] [7488,5600,4816]
200 [1536,1536,1536] [38,31,29] [7232,5264,4288]
400 [1536 , 1536 , 1536 ] [37,32,31] [7064,5432,3816]

Now we turn to prove the summation form. We use the convention Rk(z) = R0,1,k(z)

that corresponds to the illustration in the body. When k2 is even, there is σ
(k2)
i ̸= −1.

With Lemma 3.4, the summation form is,

Rc,r,k1k2(z) =Rk2(T (Rc,r,k1(y))) =
1

k2

k2∑
i=1

σ
(k2)
i

σ
(k2)
i − 1−Rc,r,k1

(y)

Rc,r,k1
(y)

=
1

k2

k2∑
i=1

σ
(k2)
i Rc,r,k1

(y)

(1 + σ
(k2)
i )Rc,r,k1

(y)− 1

=
1

k2

k2∑
i=1

σ
(k2)
i

1 + σ
(k2)
i

(Rc,r,k1(z)−
1

1 + σ
(k2)
i

)−1Rc,r,k1(x)

=

k2∑
i=1

ci(s
(k2)
i −Rc,r,k1

(z))−1Rc,r,k1
(z),

(A.3)

where

(A.4) c
(k2)
i = − 1

k2

σ
(k2)
i

1 + σ
(k2)
i

, s
(k2)
i =

1

1 + σ
(k2)
i

.

When k2 is odd, the term associated with σ
(k2)
k2

= −1 in summation form is equal to
1
k1
Rk1

.

Appendix B. Proof of Proposition 4.2.

Proof. By Lemma 3.4, we know

(B.1) Rc,r,k1
(p

(k)
i ) = R0,1,k1

(σ
(k)
i ) =

1

1 + (σ
(k)
i )k1

=
1

1 + σ
(k2)
j

= s
(k2)
j .

Appendix C. GMRES iteration number. As we mentioned in subsection 4.2,
the multi-shift GMRES will converge faster as the subspace iteration converges. Ta-
ble C.1 reports the number of solving in both the simple and the composite rules and
its GMRES iteration number. The normalized last column of Table C.1 is visualized
in Figure C.1.

Table C.1 shows that the number of solving in each subspace iteration in the
simple rule stays constant, whereas that for the composite rule decreases. Notice that
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Fig. C.1. Normalized solving cost in the composite rule.

the niter decays much slower than the number of solving in the composite rule. We
have two remark points. The first point is that different shifts converge in different
numbers of iterations, and niter is the maximum number of GMRES iterations among
all shifts. The second point is that different columns converge to eigenvectors with
different rates, and the niter shown here is the maximum number of iterations among
all columns. The difference in the decays is mainly due to the second point.
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