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This paper introduces a novel approach to implementing non-unitary linear transformations of
basis on quantum computational platforms, a significant leap beyond the conventional unitary meth-
ods. By integrating Singular Value Decomposition (SVD) into the process, the method achieves an
operational depth of O(n) with about n ancilla qubits, enhancing the computational capabilities
for analyzing fermionic systems. The non-unitarity of the transformation allows us to transform a
wave function from one basis to another, which can span different spaces. By this trick, we can
calculate the overlap of two wavefunctions that live in different (but non-distinct Hilbert subspaces)
with different basis representations. This provides the opportunity to use state specific ansatzes to
calculate different energy eigenstates under orbital-optimized settings and may improve the accuracy
when computing the energies of multiple eigenstates simultaneously in VQE or other framework. It
allows for a deeper exploration of complex quantum states and phenomena, expanding the practical
applications of quantum computing in physics and chemistry.

I. INTRODUCTION

Solving many-body Schrödinger equation is one of the
most promising applications on quantum computers, es-
pecially in the era of noisy intermediate-scale and early
fault-tolerant quantum computing. Quantum algorithms
that could be applied to solve the many-body Schrödinger
equation include but not limited to variational quan-
tum algorithms (VQAs) [1–4], quantum phase estima-
tion (QPE) [5–8], quantum simulation [9], etc. On digital
quantum computers, the many-body Schrödinger equa-
tion first needs to be discretized on a basis set, and then
the discretized operator and wavefunction need to be rep-
resented by quantum circuits and a quantum state, re-
spectively. Throughout the computation, when a change
of basis set is performed, i.e., a linear transformation of
the basis set, we could either recalculate coefficients on
classical computer and restart the quantum algorithm, or
carry out the linear transformation via a quantum circuit.
Implementing quantum circuit for the linear transforma-
tion is mandatory under various scenarios, e.g., calculat-
ing the inner product between two many-body wavefunc-
tions discretized by different basis sets. When two basis
sets are unitary linear transformations of each other, the
corresponding linear transformation is unitary and the
quantum circuit has been studied in [10–12]. When two
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basis sets are not unitary linear transformations of each
other, the corresponding linear transformation is non-
unitary, for which the quantum circuit implementation
is proposed by this paper.
Unitary linear transformation of basis set plays an im-

portant role in quantum physics and chemistry. Hartree-
Fock method [13–19] looks for the optimal unitary linear
transformation of basis set such that the single Slater de-
terminant minimizes the energy of the many-body Hamil-
tonian operator. Unitary linear transformations of basis
set are also used widely in basis set optimization meth-
ods, e.g., natural orbital rotation [15–19], complete ac-
tive space self-consistent field method (CASSCF) [20–
34], optimal orbital full configuration interaction (Op-
tOrbFCI) [35], etc. Such unitary linear transformations
of basis sets are combined with quantum algorithms for
ground state calculation [36–39] to boost the power of
quantum computer and pursuing the infinite basis set
limit. The unitary linear basis transformation can also
be adopted in quantum algorithms for excited states cal-
culation [37, 38, 40] as long as they use the same basis
set to represent both ground state and low-lying excited
states of the system.
Several prior works studied the quantum circuit imple-

mentation of the unitary linear transformation of basis
set. The unitary coupled cluster (UCC) method [41–45],
particularly with single excitation operators, is widely
used as parameterized ansatz circuits for wavefunctions.

UCC is achieved by employing an operator eT̂ , where T̂ is

anti-Hermitian and represented as
∑
i<j tij(a

†
iaj−a†

jai).
Trotter splitting is then adopted to approximate the op-
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erator by a quantum circuit [46–49]. While this UCC
quantum circuit is not designed for unitary basis trans-
formation, it could be used as a unitary transformation
of the basis set, which is mathematically guaranteed by
Thouless theorem [50]. Some other methods are pro-
posed when they consider preparing the Slater determi-
nant state by rotating the basis set. Wecker et al. [10]
describe a procedure in which they use a quantum circuit
to take unitary transformation of a basis set and prepare
arbitrary Slater determinant state. Their circuit has no
more than n2 gates with arbitrary connectivity for n be-
ing the size of the basis set. Babbush et al. [12] suggest
employing the fermionic fast Fourier transform to prepare
a Slater determinant state in a plane wave basis. This
approach involves rotating the system from a plane wave
dual basis, achieving a depth of O(n) while adhering to
the planar lattice connectivity constraints found in some
existing superconducting quantum platforms [12]. The
plane wave dual basis serves as a smooth approximation
to a grid structure, which has been explored to enhance
the efficiency of density functional calculations [51, 52].
In [11], an efficient strategy is proposed to conduct the
unitary linear transformation on a quantum computer
with linearly connected qubits, and achieves a gate depth
n
2 , where the gate depth is counted as the number of se-
quential Givens rotations. The strategy is a variant of the
QR decomposition based method of constructing single-
particle unitary transformations [10, 53, 54]. Kivlichan
et al. [11] organize the Givens rotations in QR decompo-
sition in a particular ordering to benefit from the paral-
lelization on linearly connected quantum computer and
eliminates redundant rotations based on the symmetry
of the Hamiltonian. Some of these unitary linear trans-
formation methods [11, 12] target the quantum circuit
implementations of initial state preparations.

Non-unitary linear transformations of basis sets also
play an important role in quantum physics and chemistry
for both ground state and excited state computations. In
ground state computations, for example, Jiménez-Hoyos
et al. [55] use the non-unitary Thouless theorem [50]
to rotate a orthogonal basis Hartree-Fock state to a
non-orthogonal basis Hartree-Fock state. Jiménez-Hoyos
et al. [55] derive the formulas of the Hamiltonian matrix
elements of this non-orthogonal Hartree-Fock state. In
the excited state computation, if different basis sets (ei-
ther different basis sets or different transformations of
a basis set) are adopted for the ground state and low-
lying excited states, calculating the overlap between dif-
ferent states involves a non-unitary linear transformation
of basis set. Such a state-specific rotation method for
excited state computation could be viewed as a multi-
reference (MR) method [56, 57]. Several studies have
shown that the integration of state-specific methods with
CASSCF can yield higher accuracy, even with a reduced
active space [58–61]. Such an approach is referred to as
the state-specific CASSCF (SS-CASSCF). SS-CASSCF
employs different reference states to generate configura-
tion interaction (CI) functions and incorporates an ap-

propriate orthogonal penalty into the objective function.
The computation of this orthogonal penalty requires
computing the inner product between two states under
different bases. In general, if the states exhibit dense con-
figurations, the calculation of such inner products scales
exponentially with respect to the basis set size on clas-
sical computers. Computing such inner products under
special cases, e.g. Hartree-Fock state or sparse states,
has been explored on classical computers [56, 57, 62–66].
In this work, we propose a quantum circuit that per-

forms the exact non-unitary linear transformation of a
basis set. The gate complexity of the proposed quan-
tum circuit scales polynomially in the basis set size, more
specifically scales quadratically in the basis set size, i.e.,
O(n2) for n being the basis set size. The circuit depth
scales linearly in the basis set size. Combined with regu-
lar inner product quantum circuit, we could evaluate the
inner product of two states under different basis sets with
O(n2) gates and O(n) depth on a quantum computer.
Our major contributions are summarized as follows.

1. We rewrite the unitary linear transformation of ba-
sis set using wedge exterior notation, which can
then be easily extended to the non-unitary case.

2. A quantum circuit is proposed for non-unitary lin-
ear transformations of basis sets. The 1 and 0 sin-
gular values of the overlapping matrix between two
basis sets are further compressed to reduce the gate
complexity.

3. Quantum circuits are proposed to evaluate the in-
ner product of two states in different basis sets.

The rest of the paper is organized as follows. In Sec-
tion II, we review the quantum circuit for unitary linear
transformations [11] and rewrite the derivation of the uni-
tary transformation operator in the language of exterior
algebra. Section III proposes the novel quantum circuit
for performing non-unitary linear transformations of ba-
sis set. The corresponding gate complexity and circuit
depths are analyzed as well. Based on the non-unitary
linear transformation, quantum circuits with depth O(n)
are proposed for evaluating the inner product of two
states under different basis sets in Section IV. Finally,
Section V concludes the paper together with discussions
on future work.

II. UNITARY LINEAR TRANSFORMATION

We review the quantum circuit for unitary linear trans-
formation proposed by Kivlichan et al. [11] and rewrite
the derivation using exterior algebra in this section.
The unitary linear transformation of basis set discussed

in [11] admits,

|ϕp⟩ =
n∑
q=1

|ψq⟩uqp (1)
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where u is an n × n unitary matrix, {|ψi⟩}ni=1 and
{|ϕi⟩}ni=1 are the original and rotated orthonormal ba-
sis (spin-orbitals) respectively, and n denotes the basis
set size. The associated creation and annihilation opera-
tors admit a similar transformation relationship,

a†(ϕp) =

n∑
q=1

a†(ψq)uqp and a(ϕp) =

n∑
q=1

a(ψq)(uqp)
∗
,

where a†(·) and a(·) are the creation and annihilation
operators associated with the given basis, and (uqp)

∗
is

the complex conjugate of uqp.
Given the two one-body basis sets, {|ψi⟩}ni=1 and

{|ϕi⟩}ni=1, we could generate two many-body basis sets
to represent the many-body states. For two one-body
basis sets that are related to each other by a unitary lin-
ear transformation, as in (1), their associated many-body
basis sets are also related to each other by a unitary lin-
ear transformation. The unitary linear transformation in
many-body space is characterized by the Thouless theo-
rem [50], which is equivalent to applying the operator,

U(u;ψ) = exp

(
n∑

p,q=1

(log u)pqa
†(ψp)a(ψq)

)
(2)

to the many-body states, where (log u)pq denotes the

(p, q) element of the matrix log u. The notation ψ in
U(u;ψ) denotes that all creation and annihilation oper-
ators correspond to the basis set {|ψi⟩}ni=1.

Now we give a definition of this U(u;ψ) in the language
of exterior algebra. Given an n dimensional Hilbert space
V with {|ψi⟩}ni=1 being its orthonormal basis set, the k-
th exterior powers is denoted as ∧kV . A basis set of ∧kV
admits,

{|ψi1⟩ ∧ · · · ∧ |ψik⟩ | 1 ≤ i1 < · · · < ik ≤ n} . (3)

The bases in (3) are orthonormal. For the electronic
many-body Schrödinger equation, the k-particle states
live in ∧kV . The exterior algebra of V is defined as, ∧V =
⊕k≥0 ∧k V . An orthonormal basis set of ∧V admits,

{|ψi1⟩ ∧ · · · ∧ |ψik⟩ | 1 ≤ i1 < · · · < ik ≤ n and k ≥ 0} .
(4)

The space ∧V is also known as the Fock space in physics
and chemistry. In the following Definition 1, we extend
a linear map u : V → V to a linear map ∧u : ∧V → ∧V .

Definition 1. Let u : V → V be a linear map. Define
∧u : ∧V → ∧V as,

∧u(|ψi1⟩∧|ψi2⟩∧· · ·∧|ψik⟩) = u |ψi1⟩∧u |ψi2⟩∧· · ·∧u |ψik⟩ ,

for 1 ≤ i1 < · · · < ik ≤ n and k ≥ 0. The linear map ∧u
is called the wedged map of u.

When the linear map u is of form,

u =

n∑
i,j=1

uij |ψi⟩ ⟨ψj | , (5)

the linear operator U(u;ψ) as in (2) is consistent with
∧u, i.e.,

U(u;ψ) = ∧u.

Appendix A gives the detailed derivation. The derivation
gives a proof of Thouless theorem using the language of
exterior algebra, which is different from the BCH formula
used in Kivlichan et al. [11]. We find that the extending
linear map ∧u to non-unitary transformation is straight-
forward, whereas extending the operator U(u;ψ) to non-
unitary case is more difficult. Hence, the linear map ∧u
in exterior algebra will be used throughout the rest paper
mainly for non-unitary transformations.

An important property of U(u;ψ) is the operator com-
position property, which builds the foundation for [11].
Precisely, for any two unitary matrices u1 and u2, the
composition of U(u1;ψ) and U(u2;ψ) is the operator of
product of two matrices, i.e.,

U(u1;ψ)U(u2;ψ) = U(u1u2;ψ). (6)

Lemma 2 gives an analog composition property for
wedged maps.

Lemma 2. Suppose u1 and u2 are two linear maps V →
V , then the composition property holds for wedged maps,

(∧u1)(∧u2) = ∧(u1u2).

We emphasize that two linear maps u1 and u2 in
Lemma 2 are not necessary unitary. Lemma 2 holds for
non-unitary linear maps as well.

Specifically, we consider two unitary maps defined as,

u1 =

n∑
i,j=1

u1ij |ψi⟩ ⟨ψj | , u2 =

n∑
i,j=1

u2ij |ψi⟩ ⟨ψj | .

By the equivalence between U(u;ψ) and ∧u, we have
U(u1;ψ) = ∧u1 and U(u2;ψ) = ∧u2. Therefore, the
composition of two operators admits,

U(u1u2;ψ) = U(u1;ψ)U(u2;ψ) = (∧u1)(∧u2) = ∧(u1u2).

Such a composition property agrees with the composition
of maps u1 and u2,

u1u2 =

n∑
i,j=1

(u1u2)ij |ψi⟩ ⟨ψj | ,

where u1u2 denotes the product of two matrices.
Next, we discuss the quantum circuit implementation

of U(u;ψ). For general unitary operator in exponent
form, e.g., (2), Trotterization is widely adopted in quan-
tum computing, especially in quantum simulation [8, 67].
The Trotterization leads to many number of small time
steps and accumulation of truncation errors. For the par-
ticular unitary operator U(u;ψ) as in (2), Kivlichan et al.
[11] proposes a tailored quantum circuit based on Givens
QR factorization of u. In the original work [11], real
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orthogonal matrix u are considered in detail, and an ex-
pression for complex unitary u is provided without detail.
In this paper, we revisit and rederive the decomposition
for complex unitary matrix u directly. Notably, the final
expression is slightly different from that in [11], which
should be due to typos therein.

The complex Givens rotation is composed of three
parts: two phase rotations and a regular real Givens ro-
tation. The phase rotation acting on the q-th row of
a matrix with rotation angle ϕ is denoted as pq(ϕ) =
Diag{1, . . . , 1, e−ıϕ, 1 . . . , 1}, i.e., the identity matrix ex-
cept the p-th 1 replaced by e−ıϕ. The regular real Givens
rotation by an angle θ between the p-th and q-th rows
of a matrix is denoted as rpq(θpq). Contrast to the reg-
ular real Givens rotation, the complex Givens rotation
first multiplies the elements to be eliminated by complex
signs, i.e., phase rotations, to make them real, and then
performs the real Givens rotation. For example, let us
consider the case using upi to eliminate uqi, where both
upi and uqi are complex numbers. The phase rotations,
pp(ϕp) and pq(ϕq), are chosen such that e−ıϕpupi = |upi|
and e−ıϕquqi = |uqi|, respectively. Then the real Givens
rotation, rpq(θpq), is constructed with,

θpq = arccos
|upi|√

|upi|2 + |uqi|2
.

By these constructions, after we multiply gpq =
rpq(θpq)pq(ϕq)pp(ϕp) to u, the (q, i) entry is zeroed out.
Using the complex Givens rotation and regular Givens
QR factorization procedure, a unitary matrix u is de-
composed as,

u =
∏
pq

g∗pq ·
n∏
i=1

p∗i (ϕi), (7)

where

g∗pq = pp(−ϕp)pq(−ϕq)rpq(−θpq), and
p∗i = pi(−ϕi).

Notice that there are n(n−1)
2 complex Givens rotations in

the first product of (7), and the ordering of {pq} pairs is
not unique. Kivlichan et al. [11] propose a specific order-
ing of {pq} to maximize the parallelizability in applying
these complex Givens rotations on quantum computer.

By the definition of U(u;ψ), we could define the op-
eration of U(rpq;ψ) and U(pp;ψ), and denote them, re-
spectively, as

Rpq(θ;ψ) = U(rpq(θ);ψ), and (8)

P p(ϕ;ψ) = U(pp(ϕ);ψ). (9)

The corresponding “complex Givens rotation” and its ad-
joint admit,

Gpq = U(gpq) = Rpq(θpq)P q(ϕq)P p(ϕp), and

G∗
pq = U(g∗pq) = P p(−ϕp)P q(−ϕq)Rpq(−θpq),

(10)

where we omit ψ, and some θpq, ϕp, ϕq for simplicity.
Under these notations, the operation U(u;ψ) could be
decomposed into many operations of Gpq and P i for u
defined in (7),

U(u;ψ) =
∏
pq

G∗
pq

n∏
i=1

P ∗
i (ϕi;ψ). (11)

Next we demonstrate that the decomposition (11) is suf-
ficiently simple and could be implemented using quan-
tum gates directly. By (2), the explicit expressions of
P p = U(pp(ϕ);ψ) and Rpq = U(rpq(θ);ψ) could be writ-
ten as

P p(ϕ;ψ) = exp(−ıϕpn(ψp)), and (12)

Rpq(θ;ψ) = exp
[
θpq(a

†(ψp)a(ψq)− a†(ψq)a(ψp))
]
,

(13)

where the detailed derivations could be found in Ap-
pendix B.
Now, we turn to the quantum circuit designs for

U(u;ψ). To make our discussion rigorous, we make a
strict distinction between the quantum state of the phys-
ical system being studied and the qubit state in the en-
coded space of a quantum computer. They are linked to
each other by encoded mappings. Here the mapping is
the Jordan-Wigner transformation as in Definition 3.

Definition 3. The Jordan-Wigner transformation of ba-
sis {|fi⟩ | i = 1, 2, . . . , n} is denoted as Jf , such that:

Jf (|fi1⟩ ∧ |fi2⟩ ∧ · · · ∧ |fik⟩) = |n1n2n3 · · ·⟩ ,

where n1n2n3 · · · is a bit string of length equals to the
size of basis set n. And ni = 1 if i ∈ {i1, i2, . . . , ik},
ni = 0 otherwise.

These basis vectors {|fi⟩ | i = 1, 2, . . . , n} do not need
to be a physically meaningful basis, they can be arbi-
trary abstract basis of any abstract vector space, such
as |fi⟩ is the i-th unit coordinate vector of Cn. By this
definition, the creation and annihilation operators under
Jordan-Wigner transformation are the same as the usual
definition, i.e.,

a†
i = Jfa

†(fi)J
−1
f

= Z1 ⊗ · · · ⊗ Zi−1 ⊗ (|1⟩ ⟨0|)⊗ Ii+1 ⊗ · · · ⊗ In, and

ai = Jfa(fi)J
−1
f

= Z1 ⊗ · · · ⊗ Zi−1 ⊗ (|0⟩ ⟨1|)⊗ Ii+1 ⊗ · · · ⊗ In.

(14)

Both ket-bra operations, |1⟩ ⟨0| and |0⟩ ⟨1|, are applied to
the index i qubit in the above definitions. There is no

basis notation in a†
i and ai because they are operators on

qubit states. Basis information are kept in the encoding
mapping Jf . This viewpoint is helpful in the section
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of inner-product of two states under different bases in
Section IV.

Consider a complex Givens rotation, it induces a ro-
tation between rows p and q of the matrix u, allowing
for the elimination of a single element in one of those
rows. If p and q are not adjacent, the image under
Jordan-Wigner transformation of the complex Givens ro-
tation Gpq(θ, ϕ;ψ) will apply gates on all qubits between
p and q, which is due to the fact that the Jordan-Wigner
transformation of creators and annihilators are non-local.
More explicitly, the complex Givens rotation includes
terms like a†(ψp)a(ψq), whose Jordan-Wigner transfor-
mation admits,

Jψ(a
†(ψp)a(ψq))J

−1
ψ

=Z1 ⊗ · · · ⊗ Zp−1 ⊗ |1⟩ ⟨0| ⊗
Zp+1 ⊗ · · · ⊗ Zq−1 ⊗ |0⟩ ⟨1| ⊗ Ii+1 ⊗ · · · ⊗ In.

Therefore, if we use the regular Givens QR elimination
order, i.e., using the diagonal element to eliminate all the
elements below it in its column, it prevents us from ap-
plying complex Givens rotations in parallel. In the worst
case, it results in a quantum circuit of depth O(n2) for n
being the basis set size. An efficient Givens elimination
order is proposed in Kivlichan et al. [11] for qubits with
linear connectivity. An example with n = 5 is depicted in
Fig. 1. Through the elimination procedure, the complex
Givens rotations are always applied to neighboring rows
and eliminate the elements on the second row. The pro-
cedure boosts the parallelizability, and O(n) elements, in
the best case, are simultaneously eliminated. Using the
specific elimination order, it results in a quantum circuit
of depth O(n). 

∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
3 5 ∗ ∗ ∗
2 4 6 ∗ ∗
1 3 5 7 ∗


FIG. 1: Elimination order of elements via complex

Givens rotations. The number describes the order that
the element been eliminated. Elements with the same

number mean that they could be eliminated
simultaneously. Asterisks (*) mark all upper-diagonal

elements. [11]

We provide an observation that further simplifies the
expression of U(u;ψ). After Givens QR upper triangu-
larization, the resulting diagonal matrix typically has all
elements equal to 1 except the last bottom-right element.
This is due to the phase rotations and unitarity of u.
Hence, the U(u;ψ) expression (11) could be rephrased as

U(u;ψ) =
∏
i

 ∏
q∈Stepi

(G
(i)
q−1,q)

∗

 · P ∗
n(ϕn;ψ). (15)

The upper index i of the gateG
(i)
q−1,q denotes the i-th step

of parallel complex Givens rotations and the set Stepi is

the row indices of the elements eliminated in parallel at
the i-th step. Comparing to (11), the product of phase
operators is simplified by a single phase operator acting
on the n-th row, and parallel sequence of the gates is also
indicated. Now we give the quantum circuit of U(u;ψ).
Under the Jordan-Wigner transformation with respect
to basis {|ψi⟩}ni=1, the rotation Rq−1,q(θ;ψ) is mainly
represented by a 4×4 matrix and Rq−1,q(θ;ψ) is encoded
as,

JψRq−1,q(θ;ψ)J
−1
ψ

=I1 ⊗ · · · ⊗ Iq−2 ⊗

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⊗

Iq+1 ⊗ · · · ⊗ In,

(16)

where the middle 4 × 4 matrix can be expressed as the
product of three matrices as,1 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0

·

1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ

 ·

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (17)

The first and third matrices in (17) represent the stan-
dard quantum CNOT gate, where the first qubit is the
target and the second qubit is the control. The second
matrix in (17) represents the CRY(−2θ) gate, where the
first qubit controls the RY(−2θ) gate applied to the sec-
ond qubit. The matrix representation of RY(θ) with an-
gle θ is given by

RY(θ) =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
.

As a result, if we denote the first line as the qubit q − 1
and the second as the qubit q, we have

JψRq−1,q(θ;ψ)J
−1
ψ =

RY(−2θ)
. (18)

Then the phase operator is encoded as,

JψP p(ϕ;ψ)J
−1
ψ

= I1 ⊗ · · · ⊗ Ip−1 ⊗
(
1 0
0 e−iϕp

)
⊗ Ip+1 ⊗ · · · ⊗ In.

(19)

In Appendix B, we give the detailed derivations for (16)
and (19). The phase operator is simply a phase gate
acting on the p-th qubit. Combining the rotation quan-
tum circuit as in (18) together with that of the phase
gate, we obtain the quantum circuit for complex Givens
rotations applied to adjacent rows, which is denoted as

G
(i)
q−1,q. The overall quantum circuit for JψU(u;ψ)J−1

ψ
corresponding to a 5×5 unitary map u is given in Fig. 2.
The parallel steps are consistent with that in Fig. 1.
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q1

G
(4)
12

q2

G
(5)
23 G

(3)
23

q3

G
(6)
34 G

(4)
34 G

(2)
34

q4

G
(7)
45 G

(5)
45 G

(3)
45 G

(1)
45

q5 P 5

FIG. 2: Quantum circuit for JψU(u;ψ)J−1
ψ . All gates

are their complex conjugates.

Remark. Comparing to the original work [11], we ex-
tend the discussion to complex unitary matrix in detail
and provide the corresponding quantum circuit. At the
same time, we rewrite some expressions using the exte-
rior algebra notations, which serves as an introduction of
notations for our later sections.

III. NON-UNITARY LINEAR
TRANSFORMATION

We naturally raise a question: when u is non-unitary,
can we extend the linear transformation in Section II?
The answer is yes, but the derivation is more compli-
cated and the resulting quantum circuit is about twice
the depth of the unitary one. There are at least two
potential applications for the non-unitary linear trans-
formation: a) calculating the overlap between two states
under different bases, which is detailed in the next sec-
tion; b) change of basis to a non-orthogonal one.
As we mentioned earlier, the Thouless theorem in (2)

form is too difficult to be extended to non-unitary case,
which is mainly due to the logarithm of a non-unitary
matrix. Hence, we stick to exterior algebra representa-
tion of Thouless theorem and all later derivations are in
the language of exterior algebra. We recall the notation
we use, i.e., U(u;ψ) and ∧u. When u is a unitary matrix,
two operators are equal U(u;ψ) = ∧u, for U(u;ψ), ∧u
and u being defined in (2), Definition 1, and (5), respec-
tively. When u is non-unitary, we use ∧u for the linear
map and avoid using U(u;ψ).
In order to reduce the overall circuit depth for the non-

unitary linear transformation, our construction relies on
the singular value decomposition (SVD) of u and hence
its operator u. Let the SVD of a non-unitary matrix u
be of form,

u = LDR,

where L and R are left and right singular vectors, D =
diag(σ1, . . . , σn) is a diagonal matrix with singular val-
ues in non-increasing ordering, i.e., σ1 ≥ · · · ≥ σn.
Without loss of generality, we further assume that u is

a nonunitary matrix with 2-norm bounded by one, i.e.,
1 ≥ σ1 ≥ · · · ≥ σn. Singular vectors L and R are unitary
matrices. Let {|ψi⟩}ni=1 be the set of underlying basis
set. The operator u associated with u also admits an
operator SVD,

u = LDR, (20)

where L, D, and R are associated with matrices L, D,
and R respectively,

L =

n∑
i,j=1

Lij |ψi⟩ ⟨ψj | ,

D =

n∑
i=1

σi |ψi⟩ ⟨ψi| , and

R =

n∑
i,j=1

Rij |ψi⟩ ⟨ψj | .

By Lemma 2, we have ∧u = (∧L)(∧D)(∧R). For uni-
tary matrices L and R, the operators ∧L = U(L;ψ) and
∧R = U(R;ψ) can be implemented by quantum circuits
as in Section II, e.g., analog quantum circuits of Fig. 2.
In the following, we focus on the quantum circuit con-
struction for the wedged diagonal operator ∧D.
We first rewrite ∧D as a composition of at most n

simple operators, which are simple to be implemented
by quantum gates. According to Definition 1, the action
of ∧D on an exterior algebra is defined as applying the
operator D to all one-body states, as,

(∧D) |ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩
=D |ψi1⟩ ∧D |ψi2⟩ ∧ · · · ∧D |ψik⟩
=σi1σi2 · · ·σik |ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩ .

(21)

It is worth noting that this expression is closely related
to the particle number operator. It acts like a weighted
number operator. More explicitly, if the many-body state
includes the state |ψi⟩, the result of the operation will
give a factor σi. Thus, we define an operator

ν(ψj) = 1+ (σj − 1)n(ψj),

which admits,

ν(ψj)(|ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩)

=

{
σj(|ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩), j ∈ {i1, i2, . . . , ik}
|ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩ , j /∈ {i1, i2, . . . , ik}

.

Here n(ψj) = a†(ψj)a(ψj) is the number operator. Next,
we justify that the wedge operator ∧D is equivalent to
the composition of ν(ψj). For any basis |ψi1⟩∧ · · ·∧ |ψik⟩
in the exterior algebra (Fock space), the action of the
composition of ν(ψj) admits, n∏

j=1

ν(ψj)

 |ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩

=σi1σi2 · · ·σik |ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩
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which equals (21). Hence, we conclude that the product
operator

∏n
j=1 ν(ψj) is another form of ∧D, i.e.,

∧D =

n∏
j=1

ν(ψj).

Now we move on to the quantum circuit implemen-
tation of composed operator ∧D =

∏n
j=1 ν(ψj). Obvi-

ously, ν(ψj) is not a unitary operator, and hence, cannot
be implemented by quantum circuits directly. We in-
troduce an ancilla qubit to encode the action of ν(ψj).
In the context of the Jordan-Wigner transformation, the
particle number operator admits,

nj = I1 ⊗ · · · ⊗ Ij−1 ⊗
(
0 0
0 1

)
⊗ Ij+1 ⊗ · · · ⊗ In.

We define an operator acting on qubit state as νj admit-
ting,

νj = Jψν(ψj)J
−1
ψ

= I1 ⊗ · · · ⊗ Ij−1 ⊗
(
1 0
0 σj

)
⊗ Ij+1 ⊗ · · · ⊗ In,

where the operator norm is bounded by 1 and so is σj .
We divide the discussion of quantum circuit implemen-

tation of νj into three cases: σj = 1, 0 < σj < 1, and
σj = 0. For simplicity, we drop the subscript j in the
following discussion.

When σ = 1, the corresponding operator ν is an iden-
tity operator, which does not require any quantum gates
and any ancilla qubit.

When 0 < σ < 1, the corresponding operator ν is
nonunitary. To incorporate this operation into a quan-
tum circuit, we adopt an extra ancilla qubit. The par-
ticular block encoding we use for the 2-by-2 matrix in ν
admits,

ν̃ =


1 0 0 0

0 σ 0 −
√
1− σ2

0 0 1 0

0
√
1− σ2 0 σ



=


1 0 0 0
0 cos θ2 0 − sin θ

2
0 0 1 0
0 sin θ

2 0 cos θ2

 ,

where the first qubit is the ancilla qubit and the sec-
ond one is the working qubit, and θ = 2arccosσ. This
encoded matrix ν̃ on 2-qubit is the controlled-RY gate,
denoted as CRY(θ). This controlled-RY gate applies a
rotation around the Y-axis by an angle θ to the ancilla
qubit and controlled by the working qubit. Denote Pa
as the projection operator that project the ancilla qubit
to |0⟩ state, which could be implemented via a measure-
ment, then the construction ν̃ satisfies

Paν̃ |0⟩ ⊗ |α⟩ = |0⟩ ⊗ ν |α⟩ .

a = |0⟩ RY(θ)

q

FIG. 3: Quantum circuit of embedded 2-qubit gate.
Ancilla qubit is denoted as a, which is initialized to |0⟩
state. The second qubit q is the working qubit which ν

is acted on.

...

a = |0⟩ X X

qr+1

qr+2

qn

FIG. 4: Block encoding for all νj with σj = 0. Here the
ancilla qubit a is initialized to |0⟩ state. Other qj for
r < j ≤ n are working qubits corresponding to zero

singular values of u.

The quantum circuit for ν̃ is given in Fig. 3.
The last case is that σ = 0. The technique used for

0 < σ < 1 case applies to the σ = 0 case as well. Then
for each ν̃j with singular value σj = 0, we need an ancilla
qubit. Instead, we implement the quantum circuit for all
σ = 0 together and use only one ancilla qubit to perform
the block encoding.
Let r = argmaxi{σi > 0} be the rank of the nonuni-

tary matrix u. Then we have σi > 0 for i = 1, . . . , r and
σi = 0 for i = r + 1, . . . , n. Noting that νj with σj = 0
is the projection that projects qubit qj onto |0⟩ state.
Thus, the composition of operators

n∏
i=r+1

νi

is the projection that projects qubits indexed from r+ 1
to n to |0 · · · 0⟩. It can be implemented as a X gate com-
bined with a multi-open-controlled Toffoli gate. More
specifically, given an ancilla qubit at state |0⟩ and work-
ing qubits qr+1, . . . , qn, we first flip the ancilla qubit to
state |1⟩ via an X gate. Then targeting the ancilla qubit,
we apply a multi-open-controlled Toffoli gate controlled
from all working qubits qr+1, . . . , qn. Open-controlled
gate means that the gate is applied only if the control-
ling qubits are in state |0 · · · 0⟩. After these two gates,
the quantum state will be linear combination of

|0⟩ |0 · · · 0⟩ and |1⟩ |0 · · · 0⟩⊥ ,

where the first qubit is ancilla, the rest are working qubits
qr+1, . . . , qn, and |0 · · · 0⟩⊥ is a state perpendicular to
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|0 · · · 0⟩. Hence, applying a measurement with selected
result, i.e., projecting the ancilla qubit to |0⟩, will turn
all working qubits qr+1, . . . , qn to state |0⟩. Thus, such a
quantum circuit is the block encoding as we need. This
scheme reduces the number of ancilla qubits down to one
for low-rank linear transformations u. However, the ac-
tual quantum circuit depth in implementing the multi-
open-controlled Toffoli gate depends on the underlying
quantum computer hardware, which is beyond the scope
of this paper. Figure 4 illustrates the detailed quantum
circuit for the case σ = 0.
As discussed above, both cases σ = 1 and σ = 0 lead to

more quantum resource efficient circuit implementation
than that of case 0 < σ < 1. Hence, naturally, we con-
sider rounding up some large singular values to one and
truncating some small singular values to zero. Although
both rounding up and truncating reduce the quantum re-
source cost, both of them would introduce approximation
errors. Denote the modification on the j-th singular val-
ues as ϵj . The approximation error introduced by both
the rounding-up and truncating could be bounded as,∥∥∥∥⊗nj=1

(
1 0
0 σj + ϵj

)
−⊗nj=1

(
1 0
0 σj

)∥∥∥∥ ≤
n∑
j=1

ϵj ,

where the matrix 2-norm is used. Let ũ denote the
matrix that shares the same singular vectors as u, but
has rounded up or truncated singular values, i.e., ũij =∑n
k=1 σ̃kLikRkj =

∑n
k=1(σk + ϵk)LikRkj . In this con-

text, the error of approximated wedge operator can be
bounded more concisely as,

∥∧u− ∧ũ∥ ≤
n∑
j=1

ϵj . (22)

Therefore, the overall approximation error could be well-
controlled if all ϵjs are small.

Finally, we assemble all above techniques together
and propose the quantum circuit construction of a non-
unitary linear transformation ∧u. To incorporate the
rounding-up and truncating techniques, we introduce a
threshold ε. The quantum circuit for the non-unitary
linear transformation ∧u can be approximately imple-
mented as follows.

1. Calculate the SVD of u, i.e., uij =
∑n
k=1 σkLikRkj ,

with singular values σis in non-increasing ordering.

2. Round up large singular values of u and truncate
small singular values of u, i.e.,

σ̃i =


1 σi ≥ 1− ε

σi ε < σi < 1− ε

0 σi ≤ ε

.

Let the number of σ̃i = 1 be s and the rank after
truncation be r.

3. Prepare r− s+1 ancilla qubits to state |0⟩, denote
them as as+1, as+1, . . . , ar+1.

4. Apply the unitary operator JψU(R;ψ)J−1
ψ to the

n working qubits following the circuit construction
in Section II.

5. Apply controlled-RY gates controlling from qi tar-
geting ai for i = s+ 1, . . . , r.

6. Apply an X gate to flip ancilla qubit ar+1 and then
apply a multi-open-controlled Toffoli gate control-
ling from qr+1, . . . , qn targeting ar+1.

7. Apply the unitary operator JψU(L;ψ)J−1
ψ to the n

working qubits following the circuit construction in
Section II.

8. Project all ancilla qubits to |0⟩ state via measure-
ment and post-selection.

In Fig. 5, we provide the quantum circuit for a non-
unitary matrix u of dimension 8. After the rounding-
up and truncating, the approximated non-unitary matrix
has 2 singular values equal to 1 and of rank 5.
Remark. If we remove step 8 and stop at step 7, we
actually obtain the quantum circuit corresponding to
the block encoding of ∧u. Block-encoding is a stan-
dard framework used to embed non-unitary matrices into
unitary matrices, allowing them to be implemented as
quantum circuits along with some measurements [68]. In
the next section, we will discuss how to use the block-
encoding we provided here in the context of calculating
inner products.
The quantum circuit depth and the number of gates

can be estimated based on the matrix dimension n, ap-
proximated number of ones s and approximated rank r.
The dimension of L and R are both n. And the num-
bers of gates, as in Section II for the unitary case, are

bounded by n2

2 +O(n) rotation gates (18) and n2+O(n)
phase gates. When qubits are assumed to be linearly con-
nected, the circuit depths for L and R are bounded by
O(n) times the rotation gate depth. The number of gates
for the

∏n
k=1 νk part depends on the gate counting of the

multi-open-controlled Toffoli gate. The quantum circuit
for the singular value part costs r−s+2 simple gates and
one multi-open-controlled Toffoli gate. The circuit depth
is bounded by that of the multi-open-controlled Toffoli
gate. Applying the standard decomposition as in [8], an
additional ancilla qubit is used, and the quantum circuit
depth is O((n− r)2) for n− r being the number of con-
trolling qubits. Overall, the total quantum circuit depth
is bounded by O((n− r)

2
+ n).

IV. INNER PRODUCT: AN APPLICATION

We consider two sets of one-body bases, {|ψi⟩}ni=1

and {|ϕj⟩}nj=1. The inner products between all pairs of
bases |ψi⟩ and |ϕj⟩ are available and denoted as uij , i.e.,
uij = ⟨ψi|ϕj⟩, for 1 ≤ i, j ≤ n. For the sake of nota-
tion, we assume two bases are of the same dimension n.
Our proposed algorithm could be easily extended to two
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σ̃1 = 1, q1

JψU(R;ψ)J−1
ψ JψU(L;ψ)J−1

ψ

σ̃2 = 1, q2

0 < σ̃3 < 1, q3

0 < σ̃4 < 1, q4

0 < σ̃5 < 1, q5

σ̃6 = 0, q6

σ̃7 = 0, q7

σ̃8 = 0, q8

a3 = |0⟩ RY (θ3)

|0⟩

a4 = |0⟩ RY (θ4)

|0⟩

a5 = |0⟩ RY (θ5)

|0⟩

a6 = |0⟩ X X

|0⟩

FIG. 5: An example for a nonunitary matrix u of dimension 8 with approximated singular values σ̃1 = σ̃2 = 1,
1 > σ̃3 ≥ σ̃4 ≥ σ̃5 > 0, and σ̃6 = σ̃7 = σ̃8 = 0. This quantum circuit is the approximated block encoding of ∧u.

bases of different dimensions. Two many-body states are
denoted as |Ψ⟩ and |Φ⟩, i.e.,

|Ψ⟩ =
∑

1≤i1<i2<···<ik≤n

ci1i2...ik |ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩ ,

|Φ⟩ =
∑

1≤i1<i2<···<ik≤n

c′i1i2...ik |ϕi1⟩ ∧ |ϕi2⟩ ∧ · · · ∧ |ϕik⟩ .

We consider the scenario such that both many-body
states are already encoded and prepared in quantum
computer, where these states might be generated from
ansatz circuits used in VQE framework, from quantum
simulations, or initial state preparation methods. The
encoded many-body states on quantum computer are de-
noted as,

|Ψq⟩ =
2n−1∑
I=0

dI |I⟩ , and |Φq⟩ =
2n−1∑
I=0

d′I |I⟩ ,

where |I⟩ is a bit string representing states on quantum
computer. States |Ψ⟩ and |Ψq⟩ are connected via a quan-

tum encoding or transformation Qψ, where the subscript
ψ indicates that the encoding is related to basis {|ψi⟩}ni=1.
Similarly, states |Φ⟩ and |Φq⟩ are connected viaQϕ. More
precisely, the connections admit,

Qψ |Ψ⟩ = |Ψq⟩ , and Qϕ |Φ⟩ = |Φq⟩ .

When Jordan-Wigner encoding is adopted, Qψ is the
same as Jψ. Here, we use Qψ as the encoding map to
include other encodings, e.g., parity encoding, Bravyi-
Kitaev encoding, etc.
When two basis sets are the same and the encoding

is also the same and unitary, the inner product between
two states |Ψ⟩ and |Φ⟩ is the same as that of two states
on quantum computer, i.e.,

⟨Φ|Ψ⟩ = ⟨Φq|Ψq⟩ .

Then, we could use many standard quantum circuits to
evaluate it or its modulus. A commonly used one is the
swap test as in Fig. 6. Other choices are also widely used
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n

n

|0⟩ H H

|0⟩

|Ψq⟩
|Φq⟩

FIG. 6: Swap test circuit to calculate the modulus of
the inner-product |⟨Φq|Ψq⟩|. The modulus square

|⟨Φq|Ψq⟩|2 equals to the probability of the measurement
result being |0⟩.

in excited state calculations [40, 69]. However, when two
states |Ψ⟩ and |Φ⟩ are under different basis sets, none of
the aforementioned quantum circuits for ⟨Φq|Ψq⟩ can be
used directly, due to the fact that ⟨Φ|Ψ⟩ ≠ ⟨Φq|Ψq⟩.
Notice that the inner product of two states is of a bi-

linear form. Without loss of generality, we analyze the
case that both many-body states are many-body stan-
dard basis states, i.e.,

|Ψ⟩ = |ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩ ,
|Φ⟩ = |ϕj1⟩ ∧ |ϕj2⟩ ∧ · · · ∧ |ϕjk⟩ .

Further, we introduce an auxiliary basis {|ωi⟩}ni=1 to fa-
cilitate the calculations. Note that the auxiliary basis
will not affect the results and its choice is arbitrary. We
could choose it to be any orthonormal basis in Cn. The
auxiliary space spanned by {|ωi⟩}ni=1 is denoted as Ω. A
linear map u : Ω → Ω is defined as

u =

n∑
i,j=1

⟨ψi|ϕj⟩ |ωi⟩ ⟨ωj | . (23)

Using the linear map u, the inner product of |Ψ⟩ and |Φ⟩
admits,

⟨Φ|Ψ⟩ =(|ψi1⟩ ∧ · · · ∧ |ψik⟩ , |ϕj1⟩ ∧ · · · ∧ |ϕjk⟩)

= det

⟨ψi1 |ϕj1⟩ · · · ⟨ψi1 |ϕjk⟩
...

. . .
...

⟨ψik |ϕj1⟩ · · · ⟨ψik |ϕjk⟩


= det

⟨ωi1 |u |ωj1⟩ · · · ⟨ωi1 |u |ωjk⟩
...

. . .
...

⟨ωik |u |ωj1⟩ · · · ⟨ωik |u |ωjk⟩


=(|ωi1⟩ ∧ · · · ∧ |ωik⟩ ,u |ωj1⟩ ∧ · · · ∧ u |ωjk⟩)
= (|ωi1⟩ ∧ · · · ∧ |ωik⟩ ,∧u |ωj1⟩ ∧ · · · ∧ |ωjk⟩).

(24)

Recall that Qψ, Qϕ, and Qω are the same quantum en-
coding technique applied to different basis sets. Hence,
for two many-body bases constructed by the same se-
lection of one-body bases, their quantum encoding map
to the same state representation on quantum computer,
i.e., the same bit string representation. More precisely,

for two many-body bases, |ψi1⟩ ∧ |ψi2⟩ ∧ · · · ∧ |ψik⟩ and
|ωi1⟩ ∧ |ωi2⟩ ∧ · · · ∧ |ωik⟩, which are constructed by one-
body bases of the same indices i1, i2, . . . , ik, their quan-
tum encoded states are the same, i.e.,

Qψ(|ψi1⟩∧|ψi2⟩∧· · ·∧|ψik⟩) = Qω(|ωi1⟩∧|ωi2⟩∧· · ·∧|ωik⟩).

Using such a relationship of quantum encoding, we con-
tinue deriving (24) as,

⟨Φ|Ψ⟩ =(|ωi1⟩ ∧ · · · ∧ |ωik⟩ ,∧u |ωj1⟩ ∧ · · · ∧ |ωjk⟩)
= (Q−1

ω Qω |ωi1⟩ ∧ · · · ∧ |ωik⟩ ,
(∧u)Q−1

ω Qω |ωj1⟩ ∧ · · · ∧ |ωjk⟩)
= (Q−1

ω Qψ |ψi1⟩ ∧ · · · ∧ |ψik⟩ ,
(∧u)Q−1

ω Qϕ |ϕj1⟩ ∧ · · · ∧ |ϕjk⟩)
= (Q−1

ω |Ψq⟩ , (∧u)Q−1
ω |Φq⟩).

(25)

Notice that the quantum encoding map Qω preserves the
inner-product, i.e.,

(Qω |ωi1⟩ ∧ · · · ∧ |ωik⟩ ,Qω |ωj1⟩ ∧ · · · ∧ |ωjk⟩)
= (|ωi1⟩ ∧ · · · ∧ |ωik⟩ , |ωj1⟩ ∧ · · · ∧ |ωjk⟩),

for any ω, and i1, . . . , ik, and j1, . . . , jk. Therefore, in the
last expression in (25), we could multiply both side by
Qω and obtain the definition of operator Ξ(ψ, ϕ),

⟨Φ|Ψ⟩ = (|Ψq⟩ ,Qω(∧u)Q
−1
ω |Φq⟩) = ⟨Ψq|Ξ(ψ, ϕ) |Φq⟩ ,

(26)
where

Ξ(ψ, ϕ) = Qω(∧u)Q
−1
ω .

In (26), both |Φq⟩ and |Ψq⟩ are quantum encoded states,
which are constructed by their own quantum circuits.
The remaining task in evaluating the inner product ⟨Φ|Ψ⟩
is to construct Ξ(ψ, ϕ) as a quantum circuit. From now
on, we take Qω here as the Jordan-Wigner mapping Jω
such that the quantum circuits in Section II and Sec-
tion III could be reused directly. Then, the quantum
circuit for Ξ(ψ, ϕ) is exactly the same as that proposed
in Section III with uij = ⟨ψi|ϕj⟩ and {ωi}ni=1 being the
underlying basis set. More precisely, incorporating the
quantum circuit for Ξ(ψ, ϕ) as illustrated in Fig. 5 and
projecting all ancilla qubits to state |0⟩, we could ob-
tain the quantum state Ξ(ψ, ϕ) |Φq⟩ on quantum com-
puter. For a better understanding and comparison be-
tween different inner product quantum circuits, we de-
note Ξ̃(ψ, ϕ) as the block encoding of Ξ(ψ, ϕ). For exam-

ple, for Ξ(ψ, ϕ) in Fig. 5, Ξ̃(ψ, ϕ) is the quantum circuit
therein without projecting ancilla qubits to |0⟩.

Combining the quantum circuit for Ξ(ψ, ϕ) and swap
test as in Fig. 6, we obtain our first quantum circuit for
|⟨Ψ|Φ⟩| as in Fig. 7. Notice that in Fig. 7, the quantum

circuit is constructed using Ξ̃(ψ, ϕ) and all measurements
are postponed to the end and been measured simultane-
ously. This quantum circuit only require one extra ancilla
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n

na

n

|0⟩ H H

|0⟩

|Ψq⟩

Ξ̃(ψ, ϕ)

|0a⟩

|0a⟩

|Φq⟩

FIG. 7: Swap test circuit to calculate the inner-product
|⟨Φ|Ψ⟩|. The absolute value square |⟨Φ|Ψ⟩|2 is the

probability of all the measurement being |0⟩.

qubit for inner product. Instead, we need to measure all
ancilla qubits, including those from Ξ(ψ, ϕ) and the one
from swap test. The probability of a+1 ancilla qubits in
|0⟩ leads to the absolute value of the desired inner prod-
uct, |⟨Ψ|Φ⟩|. Slightly modified quantum circuits could be
used to evaluate the real and imaginary part of ⟨Ψ|Φ⟩,
and lead to the value of the desired inner product.

The quantum circuit in Fig. 7 evaluates the absolute
value of the inner product based on the following equa-
tion,

⟨Ψ|Φ⟩ = ⟨Ψq|Ξ(ψ, ϕ) |Φq⟩ = ⟨Ψq| ⟨0a| Ξ̃(ψ, ϕ) |Φq⟩ |0a⟩ ,
(27)

where |0a⟩ denotes the ancilla qubits in the block encod-
ing of Ξ(ψ, ϕ). In Fig. 7, the inner product with ⟨0a| is
carried out by the measurement projection and the inner
product with ⟨Ψq| is carried out by the swap test.

n

na

n

|0⟩ H H

|0⟩

|Ψq⟩

Ξ̃(ψ, ϕ)

|0a⟩

|Φq⟩

|0⟩ X

FIG. 8: Alternative swap test circuit to calculate the
inner-product |⟨Φ|Ψ⟩|. The absolute value square

|⟨Φ|Ψ⟩|2 is the probability of the ancilla measurement
being |0⟩.

In some cases, measurements are not favored, e.g., the
measurement errors are large. Instead of the quantum
circuit in Fig. 7, we could propose other quantum circuits

to evaluate the inner product as well.
An alternative quantum circuit for the inner product

is to evaluate both inner products with ⟨0a| and ⟨Ψq| in
(27) using swap test. In this case, only one measurement
is needed, while extra a ancilla qubits are required for
⟨0a|. In fact, we can simplify such a quantum circuit, re-
placing the extra a ancilla qubits by a single ancilla qubit
and replacing the controlled swap gates between ancilla
qubits by a multi-controlled NOT gate. The simplified
quantum circuit is given in Fig. 8.

n

a

|0⟩ H H

|0⟩

|0n⟩ UΦ

Ξ̃(ψ, ϕ)

U†
Ψ

|0a⟩

FIG. 9: Hadamard test circuit to calculate Re ⟨Ψ|Φ⟩,
which could be inferred from the probabilities of the

measurement result.

Another alternative quantum circuit for the inner
product is based on the Hadamard test. Here we con-
sider a slightly different setting. Suppose that we have
quantum circuits UΨ and UΦ for preparing states |Ψq⟩
and |Φq⟩, respectively, i.e.,

|Ψq⟩ = UΨ |0n⟩ , and |Φq⟩ = UΦ |0n⟩ .

Under the VQE framework, UΨ and UΦ are known from
parameterized ansatz quantum circuits. Then, the inner
product admits,

⟨Φ|Ψ⟩ = ⟨Ψq| ⟨0a| Ξ̃(ψ, ϕ) |Φq⟩ |0a⟩

= ⟨0n+a| (U†
Ψ ⊗ Ia)Ξ̃(ψ, ϕ)(UΦ ⊗ Ia) |0n+a⟩ .

The quantum circuit to evaluate the real part of ⟨Φ|Ψ⟩
is given in Fig. 9, where the controlled-(U†

Ψ ⊗ Ia) and

controlled-(UΦ ⊗ Ia) are simplified by the controlled-U†
Ψ

and controlled-UΦ respectively. A simple modification
leads to the quantum circuit for the imaginary part of
⟨Ψ|Φ⟩. When the adjoint of the ansatz circuit is not
favored, inner product quantum circuits proposed in [69]
could be used as an alternative to the Hadamard test.

V. SUMMARY

This paper proposes a novel quantum circuit design
for non-unitary linear transformations of basis sets. The
non-unitary linear transformations of basis sets could be
used in many practical scenarios, including but not lim-
ited to the change of basis in initial state preparation,
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evaluating the overlapping between two states under dif-
ferent basis sets in excited state calculation under the
VQE framework, etc.

Let u be a non-unitary linear transformation of one-
body basis sets, u : V → V for V being the space spanned
by one-body bases. The designed quantum circuit imple-
ments the wedged map on the exterior algebra of V (Fock
Space), i.e., ∧u : ∧V → ∧V . To reduce the overall cir-
cuit complexity, we first calculate an SVD of u. The
left and right singular vector operators of u are unitary
and are implemented by the unitary linear transforma-
tion proposed in [11], which is reviewed in Section II. The
quantum circuit for the singular values of u are detailed
in Section III. Block encodings are applied to all singular
values strictly between zero and one. The same block
encoding could be applied to zero singular value as well.
Instead, we propose a quantum circuit to encoding all
zero singular values together with only one extra ancilla
qubit. For singular values that are sufficiently close to

one or zero, we further round big ones up to one and
truncate small ones to zero. After the rounding-up and
truncating, the quantum circuit complexity is reduced
while the approximation errors are well-controlled. As a
result, the proposed quantum circuit achieves a depth of
O(n), for n being the size of the basis set. The extra re-
quired number of ancilla qubits is the number of singular
values strictly between zero and one.
Using the proposed quantum circuit for the non-

unitary linear transformation, we further provide quan-
tum circuit evaluating the inner product of two many-
body states under different basis sets in Section IV. Three
quantum circuits for the inner product evaluation are
proposed with various number of ancilla qubits and mea-
surements. Combining the inner product quantum cir-
cuits with the excited state calculation under VQE frame-
work, we could immediately apply different basis opti-
mization for different many-body states, which imple-
ment the state-specific CASSCF/OptOrbFCI on quan-
tum computer.
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Appendix A: Details of Unitary Case

This section gives another proof of Thouless theorem
using exterior algebra. The proof offers a more intuitive
understanding of the construction process for the non-
unitary linear transformations. Additionally, it shows
that the wedged map ∧u defined in Definition 1 is consis-
tent U(u;ψ) in Thouless theorem and the work Kivlichan
et al. [11].
Let V be a finite-dimensional Hilbert spaces of dimen-

sion n. Operator u : V → V is unitary, and admits
(5). Notice that u is unitary and is a finite dimensional
normal operator. The eigendecomposition of u admits,

u =

n∑
k=1

eıϕk |σk⟩ ⟨σk| ,

for |σk⟩ being its eigenstate associated with eigenvalue
eıϕk . The eigenstates of u, {|σk⟩}nk=1 are orthonormal
bases of V . Hence, the set of many-body states, {|σi1⟩ ∧
· · · ∧ |σk⟩ | 1 ≤ i1 < · · · < ik ≤ n, and 1 ≤ k ≤ n} is also
a basis of ∧V .
Next, we derive the application of ∧u on bases of ∧V .

By the definition of ∧u, we have

∧u |σi1⟩∧· · ·∧|σik⟩ = e
∑n

k=1 ıϕknk |σi1⟩∧· · ·∧|σik⟩ , (A1)

for all 1 ≤ i1 < · · · < ik ≤ n, and 1 ≤ k ≤ n, where nk is
defined as,

nk =

{
0 k ̸∈ {i1, . . . , ik},
1 k ∈ {i1, . . . , ik}.

Notice that nk plays a similar role as the particle num-
ber operator n(σk). The right-hand-side of (A1) equals
to the application of

∏n
k=1 e

ıϕkn(νk) to |σi1⟩ ∧ · · · ∧ |σik⟩.
Further, we know that all particle number operators com-
mute with each other. Hence, we obtain,

∧ u |σi1⟩ ∧ · · · ∧ |σik⟩
= e

∑n
k=1 ıϕknk |σi1⟩ ∧ · · · ∧ |σik⟩

= e
∑n

k=1 iϕkn(σk) |σi1⟩ ∧ · · · ∧ |σik⟩ ,

for all 1 ≤ i1 < · · · < ik ≤ n, and 1 ≤ k ≤ n. We
conclude that ∧u = e

∑n
k=1 ıϕkn(σk).

Comparing to the operator U(u;ψ), the basis in the
above derivation is {σk}nk=1, which is different from
{ψk}nk=1 in U(u;ψ). Since both {σk}nk=1 and {ψk}nk=1
are bases of V , the basis transformation between these
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two is unitary. As derived in [35], the transformation of
creators and annihilators for two basis sets are

a†(σk) =

n∑
m=1

⟨ψm|σk⟩a†(ψm), and

a(σk) =

n∑
m=1

⟨σk|ψm⟩a(ψm).

The exponent in e
∑n

k=1 ıϕkn(σk) = ∧u could be rewritten
as,

n∑
ℓ=1

ıϕℓn(σℓ)

=

n∑
ℓ=1

ıϕℓa
†(σℓ)a(σℓ)

=

n∑
ℓ=1

ıϕℓ

n∑
p=1

⟨ψp|σℓ⟩a†(ψp)

n∑
q=1

⟨σℓ|ψq⟩a(ψq)

=

n∑
p=1

n∑
q=1

⟨ψp|

(
n∑
ℓ=1

ıϕℓ |σℓ⟩ ⟨σℓ|

)
|ψq⟩a†(ψp)a(ψq)

=

n∑
p,q=1

⟨ψp| (logu) |ψq⟩a†(ψp)a(ψq).

Recall the definition of operator u under basis {ψk}nk=1
as in (5). Applying the logarithm matrix function to u
leads to

⟨ψp| logu |ψq⟩ = (log u)pq. (A2)

Substituting (A2) into the above exponent expression, we
prove the Thouless theorem using exterior algebra,

∧u = exp

(
n∑

p,q=1

(log u)pqa
†(ψp)a(ψq)

)
= U(u;ψ).

Appendix B: Complex Givens Rotation Operator

This section first derives (12) and (13), and then (19)
and (16) in detail.

We first give the derivation of (12). The phase matrix
pp(ϕ) multiplies the complex sign e−ıϕp to the p-th row
of a matrix. The matrix pp(ϕ) is of form,

Diag{1, . . . , 1, e−ıϕp , 1, . . . , 1}.

The logarithm of pp(ϕ) is

log pp(ϕ) = −ıϕpEpp,

where Epp is a zero matrix with a single one at the (p, p)-
th position. Substituting the logarithm of pp(ϕ) into

U(pp(ϕ);ψ), we obtain,

U(pp(ϕ);ψ)

= exp

−ıϕp
n∑

i,j=1

(Epp)ija
†(ψi)a(ψj)


= exp(−ıϕpn(ψp)),

which proves (12).
Then we give the derivation of (13). The Givens rota-

tion matrix rpq(θpq) eliminating the (p, q)-th entry of a
matrix is of form

Ip−1

cos θpq sin θpq
Iq−p−1

− sin θpq cos θpq
IN−q


for p < q. Recall the logarithm of a rotation matrix
admits,

log

(
cos θ sin θ
− sin θ cos θ

)
=

(
0 θ
−θ 0

)
.

Hence, the logarithm of rpq(θpq) is

log rpq(θpq) = θpq(Epq − Eqp),

where Eab denote a zero matrix with a single one at the
(a, b)-th position. Substituting the logarithm of rpq(θpq)
into U(rpq(θpq);ψ), we obtain,

U(rpq(θpq);ψ) (B1)

= exp

θpq n∑
i,j=1

(Epq − Eqp)ija
†(ψi)a(ψj)

 (B2)

= exp
(
θpq(a

†(ψp)a(ψq)− a†(ψq)a(ψp))
)
, (B3)

which proves (13).
Now (19) and (16) can be derived based on (12) and

(13), respectively.
By matrix function property and (12), the Jordan-

Wigner encoded phase rotation admits,

JψP p(ϕ;ψ)J
−1
ψ

= Jψ exp(−ıϕn(ψp))J−1
ψ

= exp
(
−ıϕJψn(ψp)J−1

ψ

)
.

The Jordan-Wigner encoding of the number operator
could be derived from that of creation and annihilation
operators as in (14),

Jψn(ψp)J
−1
ψ

=Jψa
†(ψp)a(ψp)J

−1
ψ

=Jψa
†(ψp)J

−1
ψ Jψa(ψp)J

−1
ψ

=I1 ⊗ · · · ⊗ Ip−1 ⊗ (|1⟩ ⟨0|)(|0⟩ ⟨1|)⊗ Ip+1 ⊗ · · · ⊗ In

=I1 ⊗ · · · ⊗ Ip−1 ⊗
(
0 0
0 1

)
⊗ Ip+1 ⊗ · · · ⊗ In
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Hence, we have,

JψP p(ϕ;ψ)J
−1
ψ

= exp

(
I1 ⊗ · · · ⊗ Ip−1 ⊗

(
0 0
0 −ıϕ

)
⊗ Ip+1 ⊗ · · · ⊗ In

)
=I1 ⊗ · · · ⊗ Ip−1 ⊗

(
1 0
0 e−ıϕ

)
⊗ Ip+1 ⊗ · · · ⊗ In.

Similarly, by matrix function property and (13), we
could derive the Jordan-Wigner encoded Givens rotation.
For simplicity, we give the derivation for p = q − 1 in
detail, which is the only Givens rotation used in [11]. We
omit the subscript in θpq = θq−1,q in the following, and
the Jordan-Wigner encoded Givens rotation admits,

JψRq−1,q(θ;ψ)J
−1
ψ

= exp
(
Jψ
(
θ(a†(ψq−1)a(ψq)− a†(ψq)a(ψq−1))

)
J−1
ψ

)

=exp

I1 ⊗ · · · ⊗ Iq−2 ⊗

0 0 0 0
0 0 θ 0
0 −θ 0 0
0 0 0 0

⊗ · · · ⊗ In



=I1 ⊗ · · · ⊗ Iq−2 ⊗

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⊗ · · · ⊗ In.
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