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ABSTRACT: Full configuration interaction (FCI) solvers are limited to small basis sets
due to their expensive computational costs. An optimal orbital selection for FCI
(OptOrbFCI) is proposed to boost the power of existing FCI solvers to pursue the basis
set limit under a computational budget. The optimization problem coincides with that
of the complete active space SCF method (CASSCF), while OptOrbFCI is
algorithmically quite different. OptOrbFCI effectively finds an optimal rotation matrix
via solving a constrained optimization problem directly to compress the orbitals of large
basis sets to one with a manageable size, conducts FCI calculations only on rotated
orbital sets, and produces a variational ground-state energy and its wave function.
Coupled with coordinate descent full configuration interaction (CDFCI), we
demonstrate the efficiency and accuracy of the method on the carbon dimer and
nitrogen dimer under basis sets up to cc-pV5Z. We also benchmark the binding curve of
the nitrogen dimer under the cc-pVQZ basis set with 28 selected orbitals, which provide
consistently lower ground-state energies than the FCI results under the cc-pVDZ basis set. The dissociation energy in this case is
found to be of higher accuracy.

1. INTRODUCTION

Quantum many-body problems in electronic structure calcu-
lations remain difficult for strongly correlated (multireference)
systems. Both the infamous sign problem and the combinatorial
scaling make the problem intractable in a large basis set setting.
In this paper, we propose an optimal orbital selection for FCI
(OptOrbFCI) to solve full configuration interaction (FCI)
problems on large basis sets under limited memory and
computational power budget.
In the past decades, methods for solving FCI problems have

been developed rapidly, which gives an acceleration of a factor of
hundreds or even more compared with conventional methods.
Among these efficient FCI solvers, the density matrix
renormalization group (DMRG)1,2 employs a matrix product
state ansatz in representing the ground-state wave function and
then finds variational solutions. Full configuration interaction
quantum Monte Carlo (FCIQMC)3,4 and its variants
(iFCIQMC,5 S-FCIQMC6) adopt the stochastic walker
representation of wave functions in the second quantization
which is updated in each iteration according to the Hamiltonian
operator; convergence is guaranteed in the sense of the inexact
power method.7 Configuration interaction by perturbatively
selecting iteration (CIPSI),8 adaptive configuration interaction
(ACI),9 adaptive sampling configuration interaction
(ASCI),10,11 heat-bath configuration interaction (HCI),12 and
stochastic HCI (SHCI)13 dynamically select important
configurations according to various approximations of the
perturbation and then provide variational solutions via tradi-

tional eigensolvers together with a post-perturbation estimation
of the ground-state energy. Coordinate descent full config-
uration interaction (CDFCI)14 reformulates the FCI problem as
an unconstrained optimization problem and variationally solves
it via a coordinate descent method with hard thresholding. The
systematic full configuration interaction fast randomized
iteration (sFCI-FRI)15 applies a fast randomized iteration
framework16 to FCI problems and introduces a hierarchical
factorization to further reduce the computational cost. Several
other methods16−19 attempting to solve FCI problems are
developed from the numerical linear algebra community.
Nevertheless, none of the aforementioned methods can give
accurate results for basis sets of size beyond a few dozen, due to
the exponential scaling of the computational cost with respect to
the basis set size.
FCI solvers, viewed as post-Hartree−Fock (HF) methods,

usually adopt molecular orbitals (one-electron and two-electron
integrals) from HF calculation and solve the many-body
problem starting from there. Thanks to the rotation applied to
the basis set (in most cases atomic orbitals) in HF calculation,
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the molecular orbitals usually give compressible representation
of the many-body wave function. In order to further boost the
compressibility, one may consider embedding the FCI solver in
another loop of orbital rotation.11 The procedure used in
Tubman et al.11 can be described as follows. Given a set of
orbitals, they first apply the FCI solver to generate a rough
approximation of the ground-state wave function and its
associated one-body density matrix (1RDM). Then these
orbitals are rotated via the eigenvectors of the 1RDM. The
rotated orbitals are known as the natural orbitals. Using the
rotated orbitals (rotated one-body and two-body integrals), the
FCI solver is applied again. These two steps are performed
repeatedly until some stopping criterion is achieved. This
procedure aims to produce orbitals with better compressibility
in representing the many-body wave function. The optimality of
the natural orbital has been questioned in several works,20−23

which proposed various optimization procedures under different
definitions of optimalities. One shortcoming of all these works,
however, is that all these orbital rotations build on top of the
many-body wave function with orbitals of the same size as that of
the original molecular orbitals; thus, it does not save much
computational cost when we start with a large basis set.
In this paper, we consider the following problem: Given a

large basis set and limited memory and computational power,
what is the optimal variational ground-state energy under the
FCI framework? More specifically, let us consider a system with
ne electrons. An HF calculation with a basis set provides the
molecular orbitals of sizeM, {ψ1, ...,ψM}. Under the restriction of
memory usage and computational power, we assume that the
FCI solver is only able to solve the FCI problem withN orbitals,
where N < M. Our goal is then to find a partial unitary matrix

∈ ×U M N such that the ground-state energy is minimized
under an optimal set of orbitals of size N, generated from the
partial unitary transform of {ψ1, ..., ψM} via U. For simplicity we
assume that the orbitals are real valued functions and the partial
unitary matrix is a real matrix. Such an optimal orbital selection
procedure is not only valuable to FCI computations on classical
computers but also to FCI computations on noisy intermediate-
scale quantum computers.24,25 Due to the limited number of
computational qubits in current quantum computers, compres-
sion of orbitals is very much desired.
Although starting from different perspectives, this problem

ends up pursuing the same goal as the complete active space self-
consistent fieldmethod (CASSCF).26−42 CASSCF is a complete
active space version of multiconfigurational self-consistent field
(MCSCF) method, which aims to extend the Hartree−Fock
calculation to multiconfigurational spaces. Hence, comparing
CASSCF and the goal of this paper, CASSCF is proposed
starting from extending the Hartree−Fock computational
whereas the latter is proposed starting from compressing the
FCI computation. Both reach the same place. CASSCF has been
rapidly developed for several decades. There are two popular
algorithms,26,33 i.e., the super-CI method27,43 and the Newton
method.28 The super-CImethod solves the first order variational
condition with respect to the FCI coefficients and orbitals43 and
results in solving an FCI problem in the active space and an
eigenvalue problem in parametrized singly excited states. The
Newton method converts the problem to an unconstrained
optimization problem and solves it using the Newton method.
Since both methods adopt local approximation of the rotation
matrix, efficiency is guaranteed only locally. (The two methods
will be recalled and presented from an optimization point of
view below.) Recently, several modified schemes are developed

to further accelerate the orbital minimization.32,39,41 Other
related developments in CASSCF replace the direct FCI solver
by the modern FCI solvers mentioned above.30−32,34−38,40,42

Although targeting the same problem as CASSCF, since the
starting points are quite different, we pursue effective algorithms
under the setting that FCI solvers are computationally much
more expensive compared to the orbital optimization. Such a
setting is natural when applying modern FCI solvers to large
active orbital spaces and when solving FCI problems on a
quantum computer. Our proposed formulas and algorithm,
hence, are different from conventional CASSCF algorithms.26,27

Instead of proposing an ansatz for the rotation matrix and
truncating the expression, we optimize the rotation matrix
directly through a constrained optimization solver such that the
orbital optimization can converge to a minimizer far away from
the initial point achieving a better energy. The better orbital
optimization potentially reduces the number of macro iterations,
which is the total number of solving FCI problems in the active
space, and avoids some local minima. Numerically, we find that
the macro iteration number in our method either is reduced or
remains unchanged compared to that of CASSCF. In our
experiments, ground-state energies obtained by OptOrbFCI are
always equal or lower than those of CASSCF.
The contribution of our work can be summarized into three

parts. First, we mathematically formulate the problem as a
constrained optimization problem with two variables: a partial
unitary matrixU and the ground-state wave function. Since these
two variables are coupled together, the optimization problem is
very difficult to solve directly. Hence we adopt the alternating
minimization idea. The optimization problem is then decoupled
into two single variable optimization problems and solved in an
alternating way. Second, we propose an efficient algorithm,
namely, OptOrbFCI, for the optimization problem based on the
trials of several possible solvers for each of the single variable
optimization problems. Specifically CDFCI14 is applied as the
FCI solver, which has not been applied in CASSCF before.
Finally, we apply the algorithm to the water molecule, carbon
dimer, and nitrogen dimer. Limited by the size of the cc-pVDZ
basis set (the number of molecular orbitals from the HF
calculation with cc-pVDZ basis set), we produce the variational
ground-state energy using the optimal orbitals selected from the
cc-pVTZ, cc-pVQZ, and cc-pV5Z basis sets. In all cases,
significant improvements of accuracy have been observed.
Moreover, the binding curve of the nitrogen dimer is produced
using the optimal orbitals selected from the cc-pVQZ basis set
limited to the size 28. The dissociation energy is much more
accurate than the FCI results under the cc-pVDZ basis set.
The rest of the paper is organized as follows. Section 2

formulates the constrained optimization problem together with
two single variable subproblems. The detailed algorithm is
introduced in Section 3. In Section 4, we apply OptOrbFCI to
the water molecule, carbon dimer, and nitrogen dimer to
demonstrate the efficiency of the algorithm. Finally, Section 5
concludes the paper together with a discussion of future work.

2. FORMULATION

This section formulates the problem raised in the Introduction
as an optimization problem and derives the related two
subproblems.
We first introduce notations used throughout this paper. As

before, M and N denote the number of the given molecular
orbitals and the computationally affordable number of orbitals
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(N < M). The given large orbital set is {ψ1, ..., ψM}, and the
associated Hamiltonian operator in the second quantization is

∑ ∑̂ = ̂ ̂ + ̂ ̂ ̂ ̂
=

†

=

† †c c c c c cH h v
1
2p q

M

pq p q
p q r s

M

pqrs p q s r
, 1 , , , 1 (1)

where cp̂
† and cq̂ are the creation and annihilation operators

associated with ψp and ψq, respectively. The one-electron and
two-electron integrals, hpq and vpqrs, admit the following
expressions:

∫ ψ ψ= *x x x xh hd ( ) ( ) ( )pq p q1 1 1 1 (2)

∫ ψ ψ ψ ψ= * *x x x x x x x xv vd d ( ) ( ) ( , ) ( ) ( )pqrs p q s r1 2 1 2 1 2 2 1 (3)

where h(x1) and v(x1, x2) are the one-body and two-body
operators, respectively. Due to the limited memory and
computational power, we are only able to solve FCI problems
under N orbitals. Hence, we introduce a partial unitary matrix

∈U M N( , ), where M N( , ) is the space of all partial
unitary matrix of size M by N, i.e.,

= { ∈ | = }×M N U U U I( , ) M N
N

T
(4)

and IN denotes the identity matrix of size N by N. The
transformed orbitals from {ψ1, ..., ψM} via U are denoted as {ϕ1,
..., ϕN} such that

∑ϕ ψ=
=

Ui
j

M

j ji
1 (5)

where Uji denotes the (j, i)th entry of U. We also adopt the
expression (ϕ1, ..., ϕN) = (ψ1, ..., ψM) U to denote the
transformation. The Hamiltonian operator associated with {ϕ1,
..., ϕN} is then

∑ ∑̃ = ̃ ̂ ̂ + ̃ ̂ ̂ ̂ ̂
′ ′=

′ ′ ′
†

′
′ ′ ′ ′=

′ ′ ′ ′ ′
†

′
†

′ ′d d d d d dH h v
1
2p q

N

p q p q
p q r s

N

p q r s p q s r
, 1 , , , 1

(6)

where d̂p′
† and d̂q′ are the creation and annihilation operators

associated withϕp′ andϕq′ respectively, the one-electron integral
h̃p′q′ is

∫

∑

ϕ ϕ̃ = *

=

′ ′ ′ ′

=
′ ′

x x x xh h

h U U

d ( ) ( ) ( )p q p q

p q

M

pq pp qq

1 1 1 1

, 1 (7)

and the two-electron integral ṽp′q′r′s′ is

∫

∑

ϕ ϕ ϕ ϕ̃ = * *

=

′ ′ ′ ′ ′ ′ ′ ′

=
′ ′ ′ ′

x x x x x x x xv v

v U U U U

d d ( ) ( ) ( , ) ( ) ( )p q r s p q s r

p q r s

M

pqrs pp qq ss rr

1 2 1 2 1 2 2 1

, , , 1

(8)

The connection (eq 5) between orbital set {ψ1, ..., ψM} and {ϕ1,
..., ϕN} implies the connection between annihilation operators,

∑̂ = ̂′
=

′d c Uq
q

M

q qq
1 (9)

Such a relationship also holds for creation operators.
Moreover, we denote the variational space for wave function

as ϕ ϕ ψ ψ[ ] = [ ]U( , ..., ) ( , ..., )N M1 1 , which is the span of all
Slater determinants constructed from {ϕ1, ..., ϕN}.
With all notations defined above, our problem can be

formulated as

⟨Φ| ̂ |Φ⟩
ψ ψ|Φ⟩∈ [ ]

⟨Φ|Φ⟩=
∈

Hmin
U

U M N

( ,..., )
1

( , )

M1

(10)

Notice the second quantization form of Ĥ is under the orbital set
{ψ1, ...,ψM} whereas the wave function |Φ⟩ lives in the variational
space associated with {ϕ1, ..., ϕN}. Such an inconsistency is
inconvenient to handle numerically.
We now show that it is in fact equivalent to replace the

Hamiltonian Ĥ in eq 10 by H̃; thus, both the Hamiltonian and
the wave function are associated with the same set of orbitals
{ϕ1, ..., ϕN}. The connection between d̂q′ and cq̂ in eq 9 leads to
the anticommutation relation between d̂p′

† and cq̂,

∑{ ̂ ̂ } = { ̂ ̂ } =′
†

=

†
′ ′c d c c U U, ,q p

p

M

q p pp qp
1 (11)

Define another operator cq̃ =∑q′=1
N d̂q′Uqq′. The anticommutation

relation between d̂p′
† and cq̃ is the same as eq 11,

∑{ ̃ ̂ } = { ̂ ̂ } =′
†

′=
′ ′

†
′ ′c d d d U U, ,q p

q

N

q p qq qp
1 (12)

Since both cq̂ and cq̃ have the same anticommutation relation
with d̂p′

† , these two annihilation operators acting on any wave
function |Φ⟩ in ψ ψ[ ]U( , ..., )M1 give the same results, i.e.,

̂ |Φ⟩ = ̃ |Φ⟩c cq q (13)

Hence, the objective function ⟨Φ|Ĥ|Φ⟩ in eq 10 admits the same
result if all creation and annihilation operators are replaced by cp̃

†

and cq̃. The resulting Hamiltonian is exactly H̃ associated with
{ϕ1, ..., ϕN} defined in eq 6. A more detailed derivation can be
found in Appendix A. Our problem (eq 10), thus, is equivalent
to,

⟨Φ| ̃ [ ]|Φ⟩
ψ ψ|Φ⟩∈ [ ]

⟨Φ|Φ⟩=
∈

H Umin
U

U M N

( ,..., )
1

( , )

M1

(14)

where H̃[U] is H̃ defined in eq 6, and we write U in brackets to
emphasize its dependency on U.
Remark 2.1. If we assume that, under optimal orbital selection,

the system with a smaller number of electrons has higher energy, then
it can be shown that eq 14 is equivalent to the following problem:

⟨Ψ| ̃ [ ]|Ψ⟩
ψ ψ|Ψ⟩∈ [ ]

⟨Ψ|Ψ⟩=
∈

H Umin

U M N

( ,..., )
1

( , )

M1

(15)

where the wave function |Ψ⟩ now lives in a larger variational space
(and thus the computational cost exceeds the limitation). We shall
focus on the surrogate problem (14), which is computationally
feasible.
The objective function in our original problem (eq 10) has the

same expression as that in the FCI problem under the orbital set
{ψ1, ..., ψM}. Moreover, any feasible wave function in eq 10
belongs to the space ψ ψ[ ]( , ..., )M1 , which is the variational
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space of the FCI problem under {ψ1, ..., ψM}. Since the FCI
problem under {ψ1, ..., ψM} is a variational method for the many-
body Schrödinger equation, our problem (eq 10) is also a
variational method and so is eq 14. Therefore, solving eq 14
gives a variational ground-state energy and its wave function.
We see that |Φ⟩ and U in eq 14 are coupled together. Instead

of minimizing |Φ⟩ and U simultaneously, we minimize eq 14 in
an alternating fashion. We first fix U and minimize eq 14 with
respect to |Φ⟩ only. Once the minimizer of |Φ⟩ is achieved, we
then fix |Φ⟩ and minimize eq 14 with respect to U only. The
procedure is repeated until some convergence criterion is
achieved. Next, we derive the two subproblems for fixed U and
fixed |Φ⟩, respectively.
Subproblem with Fixed U. When we fix U in eq 14, the

orbital set {ϕ1, ..., ϕN} is also fixed. The optimization problem
(eq 14) is then simplified as

⟨Φ| ̃ |Φ⟩
ϕ ϕ|Φ⟩∈ [ ]

⟨Φ|Φ⟩=

Hmin
( ,..., )

1
N1

(16)

which is a standard FCI problem under the orbital set {ϕ1, ...,
ϕN}.
Subproblem with Fixed |Φ⟩. When we fix |Φ⟩, the

objective function in eq 14) can be written as

∑

∑

∑ ∑

∑ ∑

⟨Φ| ̃[ ]|Φ⟩ = ̃ ⟨Φ| ̂ ̂ |Φ⟩

+ ̃ ⟨Φ| ̂ ̂ ̂ ̂ |Φ⟩

=

+

≕

′ ′=
′ ′ ′

†
′

′ ′ ′ ′=
′ ′ ′ ′ ′

†
′
†

′ ′

′ ′= =
′ ′ ′

′

′ ′ ′ ′= =
′ ′ ′ ′ ′ ′

′ ′

d d

d d d d

H U h

v

h U U D

v U U U U D

P U( )

p q

N

p q p q

p q r s

N

p q r s p q s r

p q

N

p q

M

pq pp qq q
p

p q r s

N

p q r s

M

pqrs pp qq rr ss r s
p q

, 1

, , , 1

, 1 , 1

1

, , , 1 , , , 1

2

4

(17)

where 1Dq′
p′ = ⟨Φ|d̂p′

† d̂q′|Φ⟩ and 2Dr′s′
p′q′ = ⟨Φ|d̂p′

† d̂q′
† d̂s′d̂r′|Φ⟩ are the

standard one-body reduced density matrix (1RDM) and two-
body reduced density matrix (2RDM), respectively. The
objective function, denoted as P4(U), is then a fourth order
polynomial of U. Notice that hpq and vpqrs are given coefficients
associated with the original molecular orbital set {ψ1, ..., ψM},
and 1Dq′

p′ and 2Dr′s′
p′q′ are also independent of U as long as we fix

|Φ⟩. Hence the subproblem can be summarized as

∈
P Umin ( )

U M N( , )
4 (18)

which minimizes a fourth order polynomial of U with an
orthonormality constraint.

3. ALGORITHM
In this section, we will first discuss algorithms for solving eqs 16
and 18 in Section 3.1 and Section 3.2, respectively. Then the
overall algorithm, OptOrbFCI, is summarized as a pseudo-code
in Section 3.3 together with some discussion on initial guesses,
convergence, stopping criteria, and computational complexities.
3.1. FCI Solvers and RDM Methods. Algorithms in this

section aim for solving the FCI problem (eq 16) and producing
1RDM and 2RDM as inputs for eq 18. Most FCI solvers can
produce RDMs. The potential choices then include but are not

limited to DMRG,1,2 FCIQMC,3 ACI,9 HCI,12 and CDFCI.14

The perturbation energy is not needed for intermediate
iterations and is optional for the last FCI solved in OptOrbFCI.
Throughout this paper, CDFCI is the solver used to address all
FCI problems.
Regarding 1RDM and 2RDM, the computational cost is on

the same order as applying the Hamiltonian operator to the
many-body wave function one time, while, due to the efficiency
of CDFCI, the runtime for the FCI solving part is also of the
same order. Hence the computation of RDMs needs to be
carefully addressed. Since 1RDM can be easily reduced from
2RDM with cheap computational cost, we focus only on the
computation of 2RDM here. Assume the wave function is of the
form |Φ⟩ = ∑ | ⟩∈ x Di i i , where |Di⟩ denotes a Slater determinant

in ϕ ϕ[ ]( , ..., )N1 , xi is the corresponding coefficient, and
denotes the index set of nonzero coefficients, i.e., xi ≠ 0 for all

∈i . We introduce two methods for computing 2RDM.
The first method is of quadratic scaling with respect to the

cardinality of , | |. It loops over all pairs of Slater determinants
with nonzero coefficients, i.e., (|Di⟩, |Dj⟩) for ∈i j, . If two
Slater determinants differ by more than two orbitals, then this
pair does not contribute to 2RDM. Otherwise, the contribution
to 2RDM is evaluated. Notice that there are only | |O N( )2 pairs
that contribute to 2RDM and all of the rest of the pairs only
require an “XOR” and a “POPCOUNT” (the population count
operation counts the number of set bits in a value, which is
usually implemented using hardware in modern computers)
operation, both of which are of great efficiency in modern
computers.
The second method is of linear scaling with respect to | |. It

loops over all Slater determinants with nonzero coefficients. For
each determinant, |Di⟩, it applies all possible d̂p′

† d̂q′
† d̂s′ d̂r′ to the

determinant and queries the coefficient of d̂p′
† d̂q′

† d̂s′ d̂r′|Di⟩. The
contribution, i.e., the product of the coefficients of both
determinants and multiplying the sign, is then added to
2RDM. Unlike the first method, where only | |O( ) queries of
the coefficients of the many-body wave function are needed and
then these coefficients are stored and accessed in an array, the
second method requires | |O N( )2 queries. In almost all FCI
solvers, special data structures are used to store the wave
function with sparse coefficients, e.g., hash table, black-red tree,
sorted array, etc. Querying any of these special data structures is
relatively expensive. Hence the runtime of the second method is
much slower than that of the first one if | | is not large.
In practice, we dynamically select the method to compute

2RDM based on both | | and the querying cost. Nevertheless,
the runtime of the second method is guaranteed to be of the
same order as the FCI solving part in CDFCI. Hence the overall
total runtime for solving eq 16 and producing RDMs is, in
general, no more than twice of the FCI solver runtime in
CDFCI.

3.2. Optimizing the Orthonormal Constrained Poly-
nomial. This section introduces the algorithm used to solve eq
18. Although the objective function is simply a fourth order
polynomial of U, the orthonormality constraint makes the
problem in general more difficult to solve than the linear
eigenvalue problem. Luckily, the variableU is only of dimension
M × N. Comparing to the FCI problem, which usually costs

( )( )O Nne
operations, the computational cost of minimizing eq

18, in most cases, is negligible, while the efficient algorithm is
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still desired, especially when the given molecular orbital set size
M is much larger than N.
Regarding the orthonormality constrained optimization

problems, there are three major groups of techniques to deal
with the constraint, namely, augmented Lagrangian meth-
ods,44,45 projection methods,46 and manifold based meth-
ods.47,48 For these methods, we explored the efficiency on a
small test problem and employ a projection method with
alternating Barzilai−Borwein (BB) stepsize.46

The iteration for the employed method can be written as

τ ∇= −+U U P Uorth( ( ))k k k U k1 4 (19)

where Uk denotes the U matrix at the kth iteration, orth(·)
denotes the orthonormalization function, and τk is the
alternating BB stepsize. The orthonormalization function of
any matrix V is defined as the orthonormal basis of V and
implemented as

= Λ−V VQorth( ) 1/2

whereQ andΛ are eigenvectors and eigenvalues ofVTV, i.e.,VTV
=QΛQT. The alternating BB stepsize applies two BB stepsizes in
an alternating way as,

τ
τ

τ
=

l
m
ooo
n
ooo

k

k

for odd

for even
k

k

k

BB1

BB2

where

τ

τ

=
⟨ − − ⟩

|⟨ − − ⟩|

=
|⟨ − − ⟩|
⟨ − − ⟩

− −

− −

− −

− −

U U U U
U U G G

U U G G
G G G G

,
,

,
,

k
k k k k

k k k k

k
k k k k

k k k k

BB1 1 1

1 1

BB2 1 1

1 1

Gk = ∇U P4(Uk) is the gradient of P4 at Uk, and ⟨A, B⟩ = tr ATB.
3.3. OptOrbFCI. The overall algorithm, OptOrbFCI, hence,

alternatively minimizes eqs 16 and 18, with some computations
to prepare the inputs for each other. We summarize OptOrbFCI
as follows.

Step 1: Set iteration index k = 0 and prepare initial guess U0.
Step 2: Calculate the reduced one-body and two-body integrals

using Uk as eqs 7 and 8, respectively.
Step 3: Solve the FCI problem (eq 16) via the CDFCI method

and obtain the ground-state wave function and energy.
Step 4: If the decay of the ground-state energy is smaller than the

given tolerance, convergence has been achieved and the
algorithm is stopped.

Step 5: Compute the 1RDM and 2RDM from the ground-state
wave function.

Step 6: Solve the orthonormal constrained polynomial (eq 18)
via projection method with alternating BB stepsize as eq
19 and obtain Uk+1.

Step 7: Set k = k + 1 and repeat Steps 2−7.
Notice in the above algorithm that the stopping criteria are

checked right after the FCI calculation rather than at the end of
each iteration. However, it is not activated until the second
iteration so that we can compare the FCI ground-state energies
of the current iteration against those of the previous iteration.
We also emphasize that the CDFCI method employed here is
just one choice of FCI solvers. OptOrbFCI can employ many
other FCI solvers as a replacement.

In the following, we discuss some details of the algorithm, i.e.,
initial guesses, convergence, stopping criteria, and computa-
tional complexities.

Initial Guesses. In OptOrbFCI, the only variable needed to
be initialized is U0. We found that using a random orthonormal
matrix as the initialization of U0 works in practice, while, in this
case, the FCI ground-state energy in the first iteration is even
worse than the HF energy. A better initialization forU0, which is
the one used throughout all numerical experiments in this paper,
is the permutation matrix selecting N different orbitals with the
lowest HF orbital energy from {ψ1, ..., ψM}.
Besides the initialization for the overall algorithm, we also

need to give initializations for both subproblems, eqs 16 and 18.
For eq 16, in regular CDFCI, the wave function is usually
initialized as the single HF state. However, after rotation via U,
we lose track of the HF state in the new orbital set, {ϕ1, ..., ϕN}.
Hence we initialize CDFCI as a single state with n

2
e orbitals with

smallest “orbital energy” doubly occupied (spin-up and spin-
down), where the “orbital energy” of ϕp′ is defined as

∑ ε ˜U
p

p pp
2

(20)

where εj is the orbital energy of ψp. The initial guess for eq 18 at
iteration k, denoted as Uk

(0), is the convergent orthonormal
matrix Uk−1 from the previous iteration with a small random
perturbation, i.e.,

= +−U U M North( rand( , ))k k
(0)

1 (21)

where rand(M,N) denotes a randommatrix of sizeM byN with
each entry sampled from normal distribution with mean 0 and
standard deviation 0.1. Using such an initial guess, the
convergence is empirically found much faster than that using a
purely random initial guess. Adding randomness to the initial
guess in many cases helps with escaping from local minima. A
similar observation is obtained by the stochastic CASSCF
method,35,49 where the randomness is added to RDMs via
FCIQMC. We emphasize that this is a crucial point making our
method achieve a lower ground-state energy than conventional
CASSCF methods.

Convergence.We first discuss the convergence of solving eqs
16 and 18 and then move to the discussion on the convergence
of OptOrbFCI.
The convergence of the CDFCI algorithm in solving eq 16 is

discussed in detail in Li et al.17 Since CDFCI rewrites the linear
eigenvalue problem as an unconstrained optimization problem
with a nonconvex objective function, the global convergence is
guaranteed without a rate and the local convergence with a linear
rate is also proved in the compression-free setting.
The convergence analysis of the projection method with

alternating BB stepsize is proposed in Gao et al.46 for solving
general orthonormal constrained optimization problems, which
include our subproblem (eq 18). This method is guaranteed to
converge to points with a first-order optimality condition; i.e.,
these points have a vanishing gradient along the tangent plane of
the constraint.
The convergence analysis of OptOrbFCI has not been

rigorously shown and is beyond the scope of this paper.
However, the rich literature in the convergence analysis of the
alternating direction method of multipliers50 and coordinate-
wise descent methods17,51−53 sheds light on the analysis of
OptOrbFCI. In general, the convergence analysis of the overall
alternating algorithm relies on the convergence analysis of
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subproblems and the property of the overall objective function.
If we apply the alternating algorithm to eq 15, since the space of
|Φ⟩ remains unchanged, the energy is guaranteed to decrease
monotonically. Hence, if we have the equivalence between eq 14
and eq 15 for all U, then we also have a monotone decreasing
property for solving eq 14. Together with the convergence
properties of both subproblems, we know that OptOrbFCI
converges to points with a first-order optimality condition.
Stopping Criteria. There are plenty choices of stopping

criteria for each of three iterative algorithms. In practice, we use
the following stopping criteria joined with a fixed maximum
number of iterations.
In CDFCI, we monitor the exponential moving average of the

norm of the coefficient difference, i.e.,

α α= − Δ + −S x S(1 )t t t 1 (22)

where t is the iteration index, α = 0.99 is the decay factor, Δxt
denotes the coefficient difference, and St is the moving average.
CDFCI stops if St is smaller than a given tolerance.
The stopping criterion of the projection method for the

subproblem with fixed U is similar, i.e.,

α α= − |Δ | + −S E S(1 )t t t 1 (23)

where ΔEt is the difference of objective functions P4(Ut) and
P4(Ut−1) and α = 0.8 is the decay factor. If St is smaller than a
given tolerance, we stop the projection method.
In OptOrbFCI, we observe monotone decay of the FCI

energy. Hence the algorithm stops if the per-iteration decay is
smaller than a given tolerance.
Computational Complexities. The computational complex-

ity for an iterative algorithm depends on both the per-iteration
complexity and the number of iterations. Our discussion also
follows these two parts.
For the CDFCI algorithm, each iteration applies the

Hamiltonian operator to a single Slater determinant. The per-
iteration computational cost is dominated by the double
excitation part, which selects two electrons and excites them
to two unoccupied orbitals. Hence, CDFCI costs O(N2ne

2)
operations per iteration. However, the number of iterations is

usually big, which is still believed to be of the order ( )( )O Nne

with a small prefactor. In practice, the iteration number is usually
around 106 to 108 for small systems we have tested to achieve
10−1 mHa accuracy. The computational complexity in
producing RDMs is similar to that of the CDFCI solver part.
For the projection method, each iteration computes the

gradient of the objective function, whose computational cost is
dominated by contracting a four-way tensor vpqrs with aUmatrix
in three dimensions. The per iteration, hence, costs O(M4N)
operations. The number of iterations is much smaller than that
in CDFCI. For systems we have tested, iteration numbers are
around a few hundreds to a few thousands for the first two
iterations in the overall algorithm. Starting from the third
iteration, the iteration number of the projection method quickly
drops to a couple hundred depending on the level of random
perturbation on the initial value.
Putting the computational complexity for both CDFCI and

the projection method together, we have a per-iteration cost for
OptOrbFCI. When M is not much bigger than N, the CDFCI
part dominates the computation cost and the projection method
part can be ignored. However, when M is much bigger than N,
e.g., when the cc-pV5Z basis set is used, the computational cost
of the projection method is not negligible, but the CDFCI part is

still more expensive. Regarding the iteration number, OptO-
rbFCI usually achieves chemical accuracy in a few iterations.
The convergence to an accuracy 10−2 mHa can also be achieved
within two dozen iterations for all the cases we have tested.

3.4. Comparison with CASSCF Algorithms.We compare
OptOrbFCI with two conventional CASSCF algorithms, i.e., the
Newton−Raphson27 and super-CI methods.26,28 In the
following, we first briefly review these two methods, in particular
from an optimization point of view, and then compare themwith
our proposed OptOrbFCI algorithm.
Conventional CASSCF algorithms start with a different

representation for the orbital rotation matrix. Recall that
OptOrbFCI directly deals with the partial unitary matrix with
an orthonormality constraint. While in the CASSCF framework,
the orbital rotation is given by a square unitary matrix U
parametrized as

=U eX (24)

with X being a skew-symmetric matrix. We denote the Slater
determinant of orbitals {ψ1, ..., ψN} as {|Di⟩}, so a wave function

ψ ψ|Ψ⟩ ∈ [ ]( , ..., )N1 (recall that ψ ψ[ ]( , ..., )N1 is the space
spanned by Slater determinants given by {ψ1, ..., ψN}) can be
written as

∑|Ψ⟩ = | ⟩
∈

x D
i

i i
(25)

where xi are linear combination coefficients and denotes the
set of all configurations out of N orbitals. The target wave
function after rotation is then given by

|Φ⟩ = ̂ |Ψ⟩ = |Ψ⟩̂U e X
(26)

where Û = eX̂ denotes the rotation operator on the Slater
determinants (and hence the span) corresponding to U = eX in
eq 24.
From the point of view of optimization, the Newton−

Raphson method first converts eq 14 to an unconstrained
optimization problem using eq 24 for the orbital rotation matrix,
given by

{ }
{ } =

E X xmin ( , )
X x x

i
, : 1i (27)

with

{ } = ⟨Ψ| ̂ |Ψ⟩− ̂ ̂E X x e He( , ) X X
i (28)

where Ψ is given by eq 25, so that ∥x∥ = 1 is equivalent to the
normality constraint for |Φ⟩ due to the orthonormality between
Slater determinants. Note that with fixing X, the optimization of
E with respect to {xi} leads to a standard eigenvalue problem;
hence, the exact optimum can be obtained via FCI solvers,
similar to OptOrbFCI. The optimization with respect to X
becomes unconstrained, so the standard second order
optimization method can be applied. However, as a price to
pay, the dependence of E on X becomes quite complicated due
to the parametrization (eq 24). In the Newton−Raphson
method, one approximates E(X) quadratically near X = 0. The
optimization of X using the surrogate quadratic approximation
leads to the linear system

∑∂
∂

+ ∂
∂ ∂

=
<

E
X

E
X X

X 0
pq r s pq rs

rs

0

2

0 (29)
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To write down the equation more explicitly, let us introduce a
short-hand notation for the singly excited state as

| ⟩ = ̂ ̂ − ̂ ̂ |Ψ⟩† †c c c cpq ( )p q q p (30)

Then the first order derivative at X = 0 reads

∂
∂

= ⟨Ψ| ̂ | ⟩E
X

H pq2
pq 0 (31)

and the second order derivative reads

∂
∂ ∂

= ⟨ | ̂ | ⟩ + ⟨ | ̂ ̂ − ̂ ̂ ̂ |Ψ⟩

+ ⟨ | ̂ ̂ − ̂ ̂ ̂ |Ψ⟩

† †

† †

c c c c

c c c c

E
X X

pq H rs pq H

rs H

2 ( )

( )

pq rs
s r r s

q p p q

2

0

(32)

After X is obtained in each macro iteration, the orbitals are
rotated based on X.26,27,54 When the exact Hessian is used and
the rotation based on X is handled carefully (so that it is at least
second order accurate for small X), the Newton−Raphson
method has local quadratic convergence.54

The super-CI method takes a slightly different point of view
by directly taking an expansion of eq 26 (instead of E) with
respect to X. The first order approximation of eX̂|Ψ⟩ is known as
the singly excited wave function as

∑|Ψ ⟩ = |Ψ⟩ + ̂ ̂ − ̂ ̂ |Ψ⟩
<

† †c c c cX ( )
r s

rs r s s rSCI
(33)

where the subscript SCI is short for singly excited CI. To
determine X, the energy of |ΨSCI⟩ is minimized; as it is not
necessarily normalized, we minimize the Ritz value

⟨Ψ | ̂ |Ψ ⟩
⟨Ψ |Ψ ⟩

HSCI SCI

SCI SCI

with respect to X, which is equivalent to solving the eigenvalue
problem of the matrix

⟨Ψ| ̂ |Ψ⟩ ⟨Ψ| ̂ | ⟩

⟨ | ̂ |Ψ⟩ ⟨ | ̂ | ⟩

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

H H rs

pq H pq H rs (34)

where the second column and second row are block matrices
index by rs and pq, respectively. Thus, each step of super-CI can
also be viewed as solving an eigenvalue problem in an extended
variational space. Compared with the Newton−Raphson
method, the matrix above is related to the Hessian used in the
Newton−Raphson method (eq 29). The last two terms in the
second derivative (eq 32) aremissing in the super-CImatrix, due
to the different approximation taken in the expansion.
In both CASSCF algorithms, the rotation of the orbitals

according to X needs to be processed very carefully. Direct
transformation using the first order approximation of eq 24 is
manageable if orbitals are then orthogonalized or an overlapping
matrix is introduced. An alternative approach is through the
natural orbital of the singly excited wave function |ΨSCI⟩.
We emphasize that not every element of X is involved in the

above calculation. Since the energy E is invariant to the rotation
within unselected orbitals, the elements Xpq for both p and q
corresponding to unselected orbitals are ignored, which also
improves the numerical stability of the above algorithms.
Moreover the energy E is also invariant to the rotation within
selected orbitals. If the direct FCI solver is applied, the elements
Xpq for both p and q corresponding to selected orbitals can be

ignored as well, while, if modern FCI solvers are applied, which
all include some compression of the coefficients, the rotation
within the selected orbitals often helps improve the compres-
sibility of the wave function coefficients; hence, they are
preserved in the calculations.11,42 In the end, the numbers of
degrees of freedom in all three algorithms are the same.
Recall that the energy is only a fourth order polynomial of the

unitary matrix U as shown in eq 17, while on the other hand,
after introducing the parametrization (eq 24), the energy
depends in a quite complicated way on the parameter matrix X.
Conventional CASSCF algorithms then introduce approxima-
tions to E and Û|Ψ⟩. Expressions are valid whenX is around zero,
which means thatU is close to an identity matrix. Hence, at each
macro step, conventional CASSCF algorithms are valid and
efficient if the rotation of orbitals is not far from identity. There
are two potential drawbacks of this local optimization: (1) many
macro iterations are needed to move the rotation matrix away
from its initialization; (2) algorithms converge efficiently to a
local minimum close to the initial value. In comparison,
OptOrbFCI adopts modern optimization techniques for
orthonormal constrained optimization problems and is free to
converge to any orthonormal matrix in each macro iteration.
Therefore, each orbital optimization problem is solved more
accurately and the algorithm potentially converges to better
minima with lower energies. Specifically, taking a random initial
unitary matrix is feasible in OptOrbFCI, while it leads to
unsatisfactory results in conventional CASSCF calculations. The
price to pay is possibly a more expensive orbital optimization
cost compared with conventional CASSCF algorithms. How-
ever, we find that such a cost is negligible compared to the cost of
FCI solvers, which is the setting that motivates our work.
Remark 3.1. In CASSCF, the orbitals are usually split into three

groups, inactive, active, and virtual. Active and virtual orbitals
correspond to the selected orbitals and unselected ones af ter rotation.
Inactive orbitals are orbitals f rozen to be doubly occupied ones.
Introducing the inactive orbitals does not change the structure of any
optimization algorithm above. With another set of indices denoting
the inactive orbitals, many matrix/tensor elements are zeros, which
help reduce the computational cost. We omit the related expressions
for simplicity.

4. NUMERICAL RESULTS
In this section, we demonstrate the efficiency of the proposed
OptOrbFCI through several numerical experiments. First, we
explore the detailed properties of OptOrbFCI through a
sequence of numerical experiments on a single water molecule.
A comparison against the CASSCF method is explored here as
well. Then we compare the ground-state energies of the carbon
dimer and nitrogen dimer calculated throughOptOrbFCI under
various basis sets, i.e., cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-
pV5Z. Finally, we adopt OptOrbFCI to benchmark the binding
curve of the nitrogen dimer under the cc-pVQZ basis set, which
consists of systems with various levels of correlations. And the
dissociation energy for the nitrogen dimer is also compared
against that through the FCI method under various basis sets.
In all the numerical experiments, the original given orbitals

(one-body and two-body integrals) are calculated via the
restricted HF (RHF) in PSI455 package. All energies are
reported in the unit of Hartree (Ha).
We adopt the modern C++ implementation of CDFCI56 and

our own version of the projection method46 implemented in
MATLAB. Multithread parallelization is disabled in CDFCI.
The communication between CDFCI and the projection
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method is done via file system, i.e., the FCIDUMP file and RDM
files. All results labeled by FCI are produced by CDFCI. The
implementation of the CASSCF method in PySCF 1.7.157 is
applied for comparison purposes.
4.1. H2O Molecule. The water molecule used in this section

is at its equilibrium geometry,3,14 i.e., OH bond length 1.84345a0
andHOHbond angle 110.6°. Table 1 summarizes the properties
associated with different basis sets.

For CDFCI, the compression threshold is 5 × 10−7, the
tolerance for convergence is 5× 10−6, and themaximumnumber
of iterations is 3 × 107. The convergence tolerance for the
projection method is 10−7, and the maximum number of
iterations is 104. For OptOrbFCI, the convergence tolerance is
10−4 and the maximum number of iterations is 20. These
settings are used for all numerical experiments of the H2O
molecule.
Two different numbers of selected orbitals, N = 12 and N =

24, are tested for H2O molecules on a sequence of basis sets.
Figure 1 and Figure 3 show the convergence behavior of

OptOrbFCI against the iteration number forN = 12 andN = 24,
respectively. The HF energies are also plotted in both figures
with the x-axis label being “HF”. The energies associated with
iteration 0 are the FCI energies before applying the projection
method, and the orbitals with the smallest N orbital energies are
used as the selected orbitals. Figure 2 and Figure 4 further show
the log scale of the energy difference against the iteration. Here
the energy difference is defined as the difference between the
FCI ground-state energy at current iteration and the converged
FCI ground-state energy. In Figure 4, the curve associated with
cc-pVDZ is removed since the ground-state energies stay
constant throughout the iterations. Table 2 lists all convergent
FCI ground-state energies.

In both Figure 1 and Figure 3, we notice that all FCI ground-
state energies are lower than the HF energy under any of these

Table 1. Basis Sets for H2O
a

molecule basis electrons orbitals HF energy GS energy

H2O cc-pVDZ 10 24 −76.0240386 −76.2418601
cc-pVTZ 10 58 −76.0544374 −
cc-pVQZ 10 115 −76.0621073 −
cc-pV5Z 10 201 −76.0644002 −

aHF energy denotes the Hartree-Fock energy calculated by PSI455

and GS energy denotes the FCI ground-state energy calculated by
CDFCI.14 A bar means the number is not available.

Figure 1. Convergence of the ground-state energy of H2O against
iteration for N = 12.

Figure 2.Difference of the ground-state energy of H2O against iteration
for N = 12.

Figure 3. Convergence of the ground-state energy of H2O against
iteration for N = 24.

Figure 4.Difference of the ground-state energy of H2O against iteration
for N = 24.

Table 2. Ground-State Energies for H2O with Different
Numbers of Selected Orbitals under Variant Basis Sets

N = 12 N = 24

basis GS energy GS energy

cc-pVDZ −76.1846948 −76.2418601
cc-pVTZ −76.2251082 −76.3102225
cc-pVQZ −76.2352354 −76.3317350
cc-pV5Z −76.2382165 −76.3372849
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basis set. For the first FCI calculation with selected orbitals
according to the lowest orbital energies, i.e., iteration 0, we
observe that the smaller the basis set the lower the energy. This is
likely due to the energy concentration of the orbitals, which
means that the smaller basis set has a better concentration of
energies among occupied orbitals. As long as an optimized
partial unitary matrix U is applied, such an order is no longer
preserved starting from iteration 1. In both cases, we also notice
that the ordering of energies for different basis sets is revealed
after the first two iterations. Starting from then, larger basis sets
consistently have lower ground-state energies than the smaller
basis sets. The differences between the ground-state energies for
different basis sets are much larger than the desired chemical
accuracy. Further, in Figure 2 and Figure 4, steady convergence
is observed for all experiments and OptOrbFCI converges to a
chemical accuracy level within a few iterations. LargerN leads to
slightly more iterations in OptOrbFCI.
In addition to Figure 1 and Figure 3, Table 2 further illustrates

ground-state energies for both N = 12 and N = 24. The
difference between neighbor basis sets is decreasing as the basis
set size increases. The decreases of energies from cc-pVQZ to cc-
pV5Z for bothN are on the level of millihartree. Hence, the basis
limit is nearly achieved for H2O given N = 12 and N = 24.
The decrease of the energy asN increases from 12 to 24 is still

significant for all basis sets. Hence, we further investigate the
relationship between the ground-state energy and the number of
selected orbitals,N. Figure 5 shows such a relationship under cc-

pVDZ and cc-pVQZ basis sets. As shown in Figure 5, as we
gradually increase the number of selected orbitals, the ground-
state energy of the cc-pVDZ basis set first decays rapidly for N
between 12 and 15, and then, for N ≥ 15, the decay is much
slower. The decay of the ground-state energy of the cc-pVQZ
basis set decreased steadily for all N tested here. Hence we
expect the slow decay for the cc-pVQZ basis set comes later than
N = 24, while, under a limited computational budget, the
ground-state energy for cc-pVQZ with 24 selected orbitals is
already much lower than that of cc-pVDZ with 24 selected
orbitals.
In addition to Figure 5, the comparison between OptOrbFCI

and CASSCF is detailed in Table 3 and Table 4 for the cc-pVDZ
and cc-pVQZ basis sets, respectively. In both tables, we highlight
the rows with significantly different ground-state energies. In all
cases, OptOrbFCI achieves a lower energy. Since the original
optimization problem (eq 14) is nonconvex, any method could
be trapped in local minima especially for methods concerning

local optimization. OptOrbFCI, using additive random
perturbation to initializations in orbital optimization, in many
cases avoids the local minima near the initial point. Hence we
observe that OptOrbFCI in many cases achieves lower ground-
state energy and in no case achieves higher ground-state energy.
Here both methods use the same default initial one- and two-
body integrals with respect to Hatree-Fock orbitals. When
different initializations are considered, the results in Table 3 and
Table 4 could be different, while OptOrbFCI is still expected to
achieve energies lower than or equal to that of CASSCF. If we
further compare the macro iteration numbers, when both
methods converge to the same ground-state energy, OptOrbFCI
has fewer or an equal number of macro iterations comparing to
CASSCF. Even for those cases where the lower ground-state
energy is achieved by OptOrbFCI, the difference in the macro
iteration numbers is, in most cases, not significant. Hence we
conclude that OptOrbFCI could achieve lower ground-state
energy and reduce the macro iteration number.

4.2. C2 and N2. This section studies OptOrbFCI applied to
C2 and N2 under their equilibrium geometry; i.e., the bond
length for C2 is 1.24253 Å12,14 and the bond length for N2 is
2.118 a0.

14,58

The hyper parameters in OptOrbFCI are the same for C2 and
N2. In CDFCI, the compression threshold is 5 × 10−6, the
tolerance for convergence is 10−5, and the maximum number of
iterations is 3 × 107. In the projection method, the convergence
tolerance is 10−7 and the maximum number of iterations is 104.
In OptOrbFCI, the convergence tolerance is 10−4 and the
maximum number of iterations is 20.
Table 5 and Table 6, for C2 and N2, respectively, show the

properties of the dimers and our numerical results. Since
OptOrbFCI selects the number of orbitals the same as that
under the cc-pVDZ basis set, the ground-state energies of the cc-

Figure 5. Convergence of the ground-state energy of H2O against
varying N.

Table 3. Comparison of OptOrbFCI and CASSCF57 for H2O
under the cc-pVDZ Basis Seta

OptOrbFCI CASSCF

Orbs GS energy Iter GS energy Iter

12 −76.1847 6 −76.1734 7
13 −76.1988 8 −76.1888 7
14 −76.2182 8 −76.2029 7
15 −76.2223 7 −76.2223 7
16 −76.2270 10 −76.2247 7
17 −76.2295 6 −76.2295 7
18 −76.2314 6 −76.2314 6
19 −76.2341 3 −76.2341 5
20 −76.2360 3 −76.2360 4

aItalic rows indicate significantly different ground-state energies for
different methods. Orbs is the number of selected orbitals, and Iter is
the macro iteration number.

Table 4. Comparison of OptOrbFCI and CASSCF57 for H2O
under the cc-pVQZ Basis Set

OptOrbFCI CASSCF

Orbs GS energy Iter GS energy Iter

12 −76.2352 8 −76.2353 19
13 −76.2506 7 −76.2358 6
14 −76.2721 9 −76.2566 6
15 −76.2780 5 −76.2780 6
16 −76.2913 15 −76.2914 19
17 −76.2964 18 −76.2889 8

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00613
J. Chem. Theory Comput. 2020, 16, 6207−6221

6215

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00613?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00613?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00613?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00613?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00613?ref=pdf


pVDZ basis set are the FCI results and are used as a reference for
the rest results. Similar figures as in the case of H2O can also be
plotted for C2 and N2. Since there is not much difference, we
omit them from the paper.
Both Table 5 and Table 6 show similar properties, and we

discuss their numerical results together. First of all, we notice
that any FCI ground-state energy is lower than all the HF
energies, which shows that the improvement of the FCI
calculation over the HF calculation is beyond the difference
between basis sets. Since we fix the number of selected orbitals
to the same as that under the cc-pVDZ basis set, the
computational cost of the optimal orbital selection method for
other basis sets remains the same order as the cost of FCI under
the cc-pVDZ basis set. If only the ground-state energy is needed,
then OptOrbFCI is roughly twice the iteration number more
expensive then that of the FCI under cc-pVDZ. If both the
ground-state energy and the RDMs are needed for downstream
tasks, then the increasing factor is reduced to the iteration
number, which is between 6 and 13. In these estimations, the
computational cost of the projection method is ignored. This is
the case for the cc-pVTZ and cc-pVQZ basis sets, while for the
cc-pV5Z basis set, the computational cost of the projection
method is still smaller than that of the CDFCI part but of the
same order. Now we provide a few numbers to support this. All
the numerical results in this section are performed on a machine
with Intel Xeon CPU E5-2687W v3 at 3.10 GHz and 500 GB
memory. At least 6 tasks are performed simultaneously. The
memory for each problem is limited to 40 GB. GivenN selected
orbitals, for all basis sets, each CDFCI part (FCI solver plus
RDM calculations) costs varying from 10 000 to 50 000 s for C2,
while the computational costs for the projection method parts
are dramatically different for different basis sets. The projection
method part costs nearly 200 s, 3000 s, and 10 000 s for the cc-
pVTZ, cc-pVQZ, and cc-pV5Z basis sets, respectively. The
runtime for N2 has a similar ratio between the CDFCI part and
the projection method.
Comparing the ground-state energies under different basis

sets, we notice that the lower ground-state energy is achieved
under the larger basis set. The improvement between
consecutive basis sets, however, is gradually decreasing, close
to exponential decay. For both C2 and N2, the improvement
between the cc-pV5Z and cc-pVQZ basis sets is on the level of
millihartree.
4.3. N2 Binding Curve. This section benchmarks the

binding curve of N2 under the cc-pVQZ basis set with N = 28,
which is the number of orbitals under the cc-pVDZ basis set.
The all-electron N2 binding curve is well-known to be a difficult

problem due to the multireference property for geometry away
from equilibrium. In Wang et al.,14 the binding curve on a very
fine grid is produced under the cc-pVDZ basis set up to 10−3

mHa accuracy. Here we rebenchmark the binding curve under
the cc-pVQZ basis set with N = 28 selected orbitals with an
accuracy up to 10−1 mHa. Since the number of orbitals remains
the same, the computational cost of our optimal orbital selection
is of the same order as a single CDFCI execution.14

For the binding curve, exact same geometries as in Wang et
al.14 are produced. The compression threshold, for the CDFCI
part, is 5 × 10−6, the tolerance for convergence is 10−5, and the
maximum number of iterations is 3 × 107. The convergence
tolerance for the projection method is 10−7, and the maximum
number of iterations is 104. For OptOrbFCI, the convergence
tolerance is 10−4, and the maximum number of iterations is 20.
Figure 6 illustrates the binding curves of N2 calculated from

CDFCI under the cc-pVDZ basis set14 and from OptOrbFCI

under the cc-pVQZ basis set withN = 28. From the figure, in all
geometries, OptOrbFCI provides lower variational ground-state
energies, while the overall shapes for two curves remain similar.
Figure 7 further shows the energy difference of two binding
curves, i.e., the ground-state energy of CDFCI minus that of
OptOrbFCI. We observe that the decrease is more dramatic
when two atoms are closer. There are two nonsmooth points in
the energy difference around 2.45 a0 and 3.2 a0. Numerically, we
also find that the computation is more difficult around these two
bond lengths, i.e., the number of iterations increases. Further
investigation is needed around these two points.

Table 5. Basis Sets and Numerical Results for C2

molecule basis electrons orbitals HF energy selected orbitals iteration number OptOrbFCI GS energy

C2 cc-pVDZ 12 28 −75.4168820 28 - −75.7319604
cc-pVTZ 12 60 −75.4014464 28 6 −75.7763001
cc-pVQZ 12 110 −75.4057650 28 10 −75.7991578
cc-pV5Z 12 182 −75.4065236 28 12 −75.8030425

Table 6. Basis Sets and Numerical Results for N2

molecule basis electrons orbitals HF energy selected orbitals iteration number OptOrbFCI GS energy

N2 cc-pVDZ 14 28 −108.9493779 28 - −109.2821727
cc-pVTZ 14 60 −108.9775136 28 7 −109.3409252
cc-pVQZ 14 110 −108.9849510 28 7 −109.3639435
cc-pV5Z 14 182 −108.9866093 28 13 −109.3689430

Figure 6. Binding curves for N2. The blue curve is cited from CDFCI.14

For each bond length, OptOrbFCI selects 28 orbitals under the cc-
pVQZ basis set.
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Comparing to the single ground-state energy, the energy gap
is of more chemical relevance. Here, we also include the
dissociation energies for N2 under three settings. The
dissociation energy is defined as the difference of ground-state
energies at equilibrium geometry (2.118 a0) and at well
separated geometry (4.5 a0). The three settings are FCI under
cc-pVDZ, FCI under cc-pVQZ, and OptOrbFCI under cc-
pVQZwithN = 28. Numerical results are listed in Table 7. Using
the dissociation energy of FCI under cc-pVQZ as a reference
solution, we notice that the dissociation energy of OptOrbFCI is
more accurate than that of FCI under cc-pVDZ. The error for
FCI under cc-pVDZ is about 4 × 10−2 Ha whereas the error for
OptOrbFCI is about 10−3, which is on the level of chemical
accuracy. Hence we conclude that OptOrbFCI, in addition to
providing lower ground-state energies, provides a more accurate
dissociation energy.

5. CONCLUSION AND DISCUSSION
We consider the question in this paper for full configuration
interaction (FCI) pursuing the basis set limit under a
computational budget. We propose a coupled optimization
problem (eq 14) as a solution to the question, which is also the
formula for CASSCF. The coupling therein between the ground-
state wave function |Φ⟩ and the partial unitary matrix U is
complicated. Due to the complication, the optimization problem
(eq 14) is then split into two subproblems, eqs 16 and 18, where
the former is a standard FCI problem under compressed orbitals
and the latter is an optimization of a 4th order polynomial of U
with orthonormality constraint. An overall alternating iterative
algorithm is proposed to address the optimization problem (eq
14) with the first subproblem (eq 16) solved by a wave function
based FCI solver, namely, CDFCI,14 and the second
subproblem (eq 18) solved by a projection method.46 The
overall method above is referred as OptOrbFCI. The method in
general is efficient and stable. OptOrbFCI usually converges in 5

to 15 iterations to achieve up to 10−1 mHa accuracy. The
computational cost, hence, is bounded by that of a few
executions of the FCI solver on the selected orbital sets.
Numerically, we apply OptOrbFCI to the water molecule,

carbon dimer, and nitrogen dimer under variant basis sets.
Under the number of orbitals using the cc-pVDZ basis set, we
pursue the FCI calculation under the cc-pVTZ, cc-pVQZ, and
cc-pV5Z basis sets. In all cases, we obtain ground-state energies
lower than that under cc-pVDZ, where the decrease is beyond
chemical accuracy. In the comparison against the conventional
CASSCF method,57 OptOrbFCI could achieve lower ground-
state energy and reduce the macro iteration number. The N2
binding curve is rebenchmarked usingOptOrbFCI under the cc-
pVQZ basis set with 28 selected orbitals. And the dissociation
energy in this case is more accurate than that obtained by the
FCI solver under the cc-pVDZ basis set. Hence we conclude that
OptOrbFCI coupling with existing FCI solvers is able to pursue
the basis set limit under a computational budget.
There are a list of immediate future works of OptOrbFCI. In

the current implementation, the orbital symmetry in the given
large orbital set is totally ignored; so is the frozen core setting.
Under the given large orbital set with orbital symmetry, both the
one-body and two-body integrals are of sparse structure. As we
ignored the symmetry and frozen core setting, the one-body and
two-body integrals of the rotated orbitals are then dense tensors.
The downstream FCI problem becomes more expensive. Hence
one future work is to implement the rotation under an orbital
symmetry constraint and frozen core setting to reduce the cost
of FCI solvers. When orbital symmetries are preserved, the
corresponding ground-state energy will be lower bounded by
that of our current algorithm. Further investigation is needed on
the trade-off between the accuracy and the computational cost.
A parallelization of the projection method becomes important
when the basis set gets large, since the computational bottleneck
for the projection method lies in the 4-way tensor contraction,
which can be realized as a dense matrix−matrix multiplication.
Efficient both distributed-memory and shared-memory paralle-
lizations are manageable. Highly efficient GPU acceleration can
also be expected. Besides implementation, further investigation
of the convergence property is desired. And extension to low-
lying excited states calculation is also a promising future work to
be explored. When both ground-state and low-lying excited
states are considered under the OptOrbFCI framework with a
modified objective function, we expect that the optimal rotation
matrix would balance the error among states under consid-
eration and hence potentially provide more accurate approx-
imation to excitation energies than our current algorithm.

■ APPENDIX A: EQUIVALENCE BETWEEN
EQUATIONS 10 AND 14

This section provides detailed derivations for the equivalence
between eqs 10 and 14. The key step is to show that eq 13 holds
for any wave funct ion |Φ⟩ in ψ ψ[ ]U( , ..., )M1 =

Figure 7. Difference of binding curves for N2 using FCI under the cc-
PVDZ basis set and OptOrbFCI under the cc-pVQZ basis set withN =
28.

Table 7. Dissociation Energy for N2

GS energy GS energy

method basis electrons orbitals 2.118 a0 4.5 a0 dissociation energy

FCIa cc-pVDZ 14 28 −109.2821727 −108.9659102 0.3162625
cc-pVQZ 14 110 −109.4590412 −109.1059938 0.3530474

OptOrbFCI cc-pVQZ 14 28 −109.3639435 −109.0117220 0.3522214

aFCI results are calculated through CDFCI.
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ϕ ϕ[ ]( , ..., )N1 . Since the operators are linear operators and the
space is a linear space, it is sufficient to show that eq 13 holds for
all bases in ϕ ϕ[ ]( , ..., )N1 , i.e., all Slater determinants. Any
Slater determinant |Di⟩ in ϕ ϕ[ ]( , ..., )N1 can be written as

| ⟩ = ̂ ··· ̂ | ⟩
† †

d dD 0i i in1 e (35)

where i1, ..., ine are the index of ne occupied orbitals and |0⟩
denotes the vacuum state. Now we evaluate the difference of
acting cq̂ and cq̃ on such a Slater determinant. Using the
anticommutation relations 11 and 12, the difference can be
simplified as

̂ − ̃ | ⟩ = ̂ − ̃ ̂ ··· ̂ | ⟩

= { ̂ ̂ } − { ̃ ̂ } ̂ ··· ̂ | ⟩

− ̂ ̂ − ̃ ̂ ··· ̂ | ⟩

= − ̂ ̂ − ̃ ̂ ··· ̂ | ⟩
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(36)

where the last equality holds since the annihilation operators
acting on the vacuum state vanish. Since any wave function

ϕ ϕ|Φ⟩ ∈ [ ]( , ..., )N1 can be expressed as a linear combination
of Slater determinants, i.e., |Φ⟩ = ∑i xi |Di⟩, where xi are
coefficients, acting the difference of cq̂ and cq̃ on it leads to

∑̂ − ̃ |Φ⟩ = ̂ − ̃ | ⟩ =c c c cx D( ) ( ) 0q q
i

i q q i
(37)

Henc e we s howed t h a t e q 1 3 ho l d s f o r a l l
ϕ ϕ|Φ⟩ ∈ [ ]( , ..., ) .N1 The conjugate of eq 13 gives

⟨Φ| ̂ = ⟨Φ| ̃† †c cp p (38)

The one-body part in the objective function in eq 10 then admits

∑

∑

∑ ∑

∑

Φ ̂ ̂ Φ

= ⟨Φ| ̃ ̃ |Φ⟩

= ⟨Φ| ̂ ̂ |Φ⟩

= Φ ̃ ̂ ̂ Φ

=

†

=

†

= ′ ′=
′

†
′ ′ ′

′ ′=
′ ′ ′

†
′

c c

c c

d d

d d

h

h

h U U

h

p q

M

pq p q

p q

M

pq p q

p q

M

pq
p q

N

p q pp qq

p q

N

p q p q

, 1

, 1

, 1 , 1

, 1 (39)

where h̃p′q′ is defined as eq 7. The one-body part in the objective
function in eq 10, hence, is equivalent to that in eq 14.
In order to show the equivalence of the two-body part in both

objective functions, we need two more anticommutation
relations. The anticommutation relation between cŝ and cr̃
satisfies

∑

∑ ∑
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Similarly, we also have the anticommutation relation between cp̃
†

and cq̂
†,

{ ̃ ̂ } =† †c c, 0p q (41)

The anticommutation relations within cs̃ can also be derived in
an analog way. The two-body part in the objective function in eq
10 then admits
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where the second equality applies the anticommutation relations
in eqs 40 and 41, the third equality applies the anticommutation
relations within cs̃, and ṽp′q′r′s′ is defined as eq 8. The two-body
part in the objective function in eq 10, hence, is equivalent to
that in eq 14.
Combining eqs 39 and 42, we conclude that the objective

functions in eqs 10 and 14 are equivalent given the wave function
ϕ ϕ|Φ⟩ ∈ [ ]( , ..., )N1 .

Table 8. Ground-State Energies for N2 with Bond Lengths
Smaller than 2.118 a0

FCI OptOrb

bond length (a0) cc-pVDZ (Ha) cc-pVQZ(28) (Ha)

1.500 −108.6300476 −108.8144031
1.550 −108.7719968 −108.9391824
1.600 −108.8888460 −109.0429050
1.650 −108.9843136 −109.1260152
1.700 −109.0615754 −109.1926550
1.750 −109.1233484 −109.2443696
1.800 −109.1719641 −109.2830113
1.850 −109.2094264 −109.3137005
1.900 −109.2374578 −109.3359754
1.950 −109.2575411 −109.3511562
2.000 −109.2709530 −109.3603603
2.050 −109.2787896 −109.3645818
2.100 −109.2819938 −109.3647561
2.118 −109.2821727 −109.3639435
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■ APPENDIX B: N2 BINDING CURVE
The N2 binding curve is plotted in Figure 6, and the detailed
energies are given in Table 8 and Table 9. Table 8 provides the
ground-state energies for N2 with bond length smaller than that
at equilibrium geometry, whereas Table 9 provides the ground-
state energies with bond length greater than that at equilibrium
geometry. In both tables, we apply OptOrbFCI to compute the
ground-state energies of N2 under the cc-pVQZ basis set with 28
selected orbitals. The same list of bond lengths as that in Wang
et al.14 is adopted here. The ground-state energies of FCI under
the cc-pVDZ basis set are cited from Wang et al.14
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