
Products between block-encodings

Dekuan Donga, Yingzhou Lia,b, Jungong Xuea

aSchool of Mathematical Science, Fudan University, China
bShangehai Key Laboratory for Contemporary Applied Mathematics, China

Abstract
Block-encoding is a standard framework for embedding matrices into unitary operators in quantum algo-
rithms. Efficient implementation of products between block-encoded matrices is crucial for applications such
as Hamiltonian simulation and quantum linear algebra. We present resource-efficient methods for matrix-
matrix, Kronecker, and Hadamard products between block-encodings that apply to rectangular matrices
of arbitrary dimensions. Our constructions significantly reduce the number of ancilla qubits, achieving ex-
ponential qubit savings for sequences of matrix-matrix multiplications, with a moderate increase in gate
complexity. These product operations also enable more complex block-encodings, including a compression
gadget for time-dependent Hamiltonian simulation and matrices represented as sums of Kronecker products,
each with improved resource requirements.

Keywords:
Block-encoding, Quantum circuit, Product, Permutation

1. Introduction

Quantum computing holds the potential to solve certain computational problems far more efficiently than
classical algorithms. This promise is especially evident in areas dominated by linear algebraic operations,
such as Hamiltonian simulation [1, 2], solving systems of linear equations [3, 4, 5], quantum machine learning
[6], and quantum optimization [7, 8]. A central reason for this advantage is that quantum computers can
naturally manipulate high-dimensional vector spaces, provided that the underlying linear operator can be
accessed efficiently.

The block-encoding framework, formalized in [9], has emerged as a powerful method for embedding
matrices into unitary operations, thereby enabling quantum algorithms to operate on non-unitary matrices.
The block-encoding technique embeds a matrix A ∈ C2n×2n into the top-left block of a larger unitary
operator UA, allowing quantum circuits to access and manipulate A indirectly while preserving unitary
property. Formally, a unitary UA ∈ C2n+a×2n+a is called an (α, a, ε)-block-encoding of A if

∥A − α (⟨0a| ⊗ I) UA (|0a⟩ ⊗ I)∥ ≤ ε,

where a ancilla qubits are initialized and postselected in the |0a⟩ state. By representing a matrix as a block of
a larger unitary, block-encoding provides a uniform language for quantum linear algebra, streamlining both
the analysis and design of algorithms. Consequently, block-encoding has become a cornerstone technique
in the development of efficient quantum algorithms. The technique of block-encoding enables efficient
implementation of matrix functions [9], quantum linear system solvers [5], and Hamiltonian simulation
techniques [2, 10]. Consequently, a growing body of work has focused on constructing block-encodings for
individual matrices or matrix classes [11, 12, 13, 14, 15, 16, 17].

In many applications, however, the matrices of interest do not appear in isolation but rather as composi-
tions of simpler matrices. For instance, Dyson-series based Hamiltonian simulation requires ordered products
of Hamiltonian terms [2]; quantum differential equation algorithms often involve structured matrices with
Kronecker product forms [18, 19, 20]. Thus, the task of constructing block-encodings for compositions of ma-
trices arises frequently and is indispensable for a broad range of quantum algorithms. Several foundational
matrix operations have been shown to be efficiently implementable between block-encodings:

ar
X

iv
:2

50
9.

15
77

9v
1

 [
qu

an
t-

ph
]

 1
9

Se
p

20
25

https://arxiv.org/abs/2509.15779v1

• Matrix-matrix multiplication: Given an (α, a, ε)-block-encoding of A and a (β, b, δ)-block-encoding
of B, one can construct an (αβ, a+ b, αε+ βδ)-block-encoding of AB as described in [9].

• Kronecker product: If A and B are block-encoded, their Kronecker product A ⊗ B can be block-
encoded by taking the tensor product of the two block-encodings and projecting onto the combined
ancilla state [21].

• Matrix Hadamard product: Since the entries required for the Hadamard product are contained
within the Kronecker product, it can be derived by first constructing the Kronecker product and then
applying a proper permutation to reposition the relevant elements [22].

• Linear combinations: Using the Linear Combination of Unitaries (LCU) technique, weighted sums
of block-encoded matrices can be implemented with logarithmic overhead in the number of terms [9].

• Inversion and matrix functions: The technique called quantum singular value transformation
(QSVT) enables efficient implementation of functions of block-encoded normal matrices, including
A−1 and exp(ıAt) [9, 10].

This paper is devoted to the problem of implementing products between block-encodings, including
the Kronecker product, the Hadamard product, and the matrix-matrix product, in a qubit- and gate-
efficient manner. Our goal is to exploit matrix structures to design product constructions that reduce
circuit complexity and ancillary qubit requirements, thereby extending the practicality of block-encoding
based algorithms on quantum devices. Our main contributions are as follows:

• We address the more general setting where the two matrices to be multiplied are not necessarily
square, and their dimensions are not restricted to powers of two, thereby broadening the applicability
of block-encoded matrix operations.

• We propose a new method for implementing matrix-matrix products that significantly reduces the
number of required ancilla qubits, at the cost of a modest increase in gate complexity. The qubit
savings become particularly significant when computing the product of a sequence of matrices, where
the required number of ancilla qubits can be reduced exponentially.

• Compared to the Kronecker product implementation in [21], we replace the SWAP gates with two
CNOT gates, achieving a reduction in gate complexity. Extending the same qubit-efficient princi-
ple used in our matrix-matrix product construction, we further provide a qubit-efficient method for
implementing the Kronecker product.

• We rederive the Hadamard product implementation between block-encodings from [22] and extend
it to construct convolution operations and vectorization operators, thereby enriching the toolbox of
linear operations that can be efficiently realized within block-encodings framework.

• We apply the idea of qubit-efficient implementation of matrix-matrix products to construct a com-
pression gadget for time-dependent Hamiltonian simulation [2], which has broad applications including
non-unitary dynamic simulation [23, 24, 25] and quantum linear system algorithms [26]. Compared to
the existing method, our construction is more concise and eliminates redundant control operations.

• By combining the Kronecker product of block-encodings with the LCU framework, matrices represented
as sums of Kronecker products can be efficiently block-encoded. The benefit of utilizing such a structure
is exemplified by the adjacent matrix of an extended binary tree [11], where our approach naturally
yields a more efficient implementation.

The remainder of this paper is organized as follows. In Section 2, we present our constructions for block-
encodings of the Kronecker product, the matrix-matrix multiplication, and the Hadamard product. Imple-
mentations of convolution operators and vectorization operators are also discussed. In Section 3, we give
several applications of matrix products between block-encodings, including the relevance to time-dependent
Hamiltonian simulations and the block-encoding of matrices which can be written as a sum of Kronecker
products. Finally, Section 4 provides concluding remarks and directions for future research.

2

2. Implementation of products

In this section, we describe the implementation of several types of products between block-encodings.
We begin with the Kronecker product, which naturally aligns with the tensor-product structure of quantum
computing and can therefore be realized efficiently. Then, we introduce a qubit-efficient method for im-
plementing matrix-matrix products, which substantially reduces the required number of ancilla qubits; the
same idea can also be applied to the Kronecker product. Finally, we present an explicit construction of the
permutation matrix that extracts the entries of the Hadamard product from the Kronecker product, and
we show that this permutation also enables the implementation of the vectorization operator, which maps
a matrix to a column vector.

In most of the previous works, the matrix A to be block-encoded is assumed to be square, with dimension
a power of two. In this paper, we relax both assumptions and adopt the following generalized definition of
block-encodings.

Definition 1. Let matrix A ∈ CM×N . A unitary matrix UA ∈ C2a×2a is an (α, a)-block-encoding of matrix
A if

UA =
[1

α A ∗
∗ ∗

]
,

where a denotes the total number of qubits on which UA acts, rather than the number of ancilla qubits.

2.1. Kronecker product
Let B ∈ CMb×Nb and C ∈ CMc×Nc . Suppose the block-encodings of B and C are, respectively,

UB =
[
B ∗
∗ ∗

]
∈ C2b×2b

, UC =
[
C ∗
∗ ∗

]
∈ C2c×2c

Then, the Kronecker product of UB and UC admits

UB ⊗ UC =

B ⊗
[
C ∗
∗ ∗

]
∗

∗ ∗

 , B ⊗
[
C ∗
∗ ∗

]
=


b00C ∗ b01C ∗ · · ·

∗ ∗ ∗ ∗ · · ·
b10C ∗ b11C ∗ · · ·

∗ ∗ ∗ ∗ · · ·
...

...
...

...
. . .

 ,

where bij denotes the (i, j)-entry of B. Thus, while UB ⊗ UC contains all entries of B ⊗ C, these entries
are interleaved with undesired star blocks.

Our target is to obtain a block-encoding whose top-left block is exactly B ⊗C, we construct permutation
matrices (acting on rows and columns) that reorder the basis so as to gather the bijC blocks contiguously,
i.e., find permutation unitaries Πrow and Πcol such that

Πrow (UB ⊗ UC) Π†
col =

[
B ⊗ C ∗

∗ ∗

]
,

where † denotes the Hermitian conjugate. The required permutations admit an efficient implementation on
the qubit registers. To introduce the construction precisely and analyze its gate complexity, we present the
following lemmas.

Lemma 2. Let N = 2n and let P ∈ CN×N be a permutation unitary such that

P |i⟩ = |(i+ d) mod N⟩, i ∈ {0, 1, . . . , N − 1} ,

for a fixed integer d. Then P can be implemented as an addition of the classical constant d modulo N on n
qubits:

3

• using the ripple-carry adder of [27] with O(n) gates, O(n) depth, and n+ 1 ancilla qubits; or

• using a QFT-based construction [28, 29] with O(n2) gates, O(n) depth, and no ancilla qubits.

Lemma 3. Let
vi =

[
ai

∗

]
∈ C2s

, ai ∈ CM ,M < 2s, ∀i = 0, . . . , 2d − 1,

and define D = 2d. There exists a quantum circuit Π such that

Π


v0
v1
...

vD−1

 =



a0
a1
...

aD−1
∗
...
∗


.

The gate complexity of Π depends on M :

• if M = 2t, Π requires 2(d− 1) CNOT gates;

• if M > 2s−1, Π requires O(ds2) one- or two-qubit gates;

• if 2t−1 < M < 2t for some t < s, Π requires O(dt2) one- or two-qubit gates.

In summary, the gate complexity of Π is bounded by O(d(logM)2).

Proof. For each pair (vi,vi+1), there exists a permutation matrix P ∈ R2s+1×2s+1 such that

P

[
vi

vi+1

]
=


ai

ai+1
∗
∗

 . (1)

That is, P extracts the M -dimensional sub-blocks ai,ai+1 from the vectors vi,vi+1 and moves them to the
top of the new block. Applying this transformation pairwise in tensor-product form, we obtain:

I2d−2 ⊗ P



a0
∗

a1
∗
...

aD−2
∗

aD−1
∗


=



a0
a1
∗
∗
...

aD−2
aD−1

∗
∗


and I2d−3 ⊗ P ⊗ I2



a0
a1
∗
∗
...

aD−2
aD−1

∗
∗


=



a0
a1
a2
a3
∗
∗
∗
∗
...


.

Iterating this construction for d− 1 layers, we obtain the overall unitary

Π =
d−2∏
i=0

I2d−2−i ⊗ P ⊗ I2i ,

which rearranges all the ai blocks consecutively at the top of the output vector, yielding the desired form.
It remains to specify the permutation P depending on the size M .

4

1. Case M = 2t: we may set P = T ⊗ I2t , where T is a permutation on s+ 1 − t qubits specified by

T |00 · · · 00⟩s+1−t = |00 · · · 00⟩s+1−t,

T |10 · · · 00⟩s+1−t = |00 · · · 01⟩s+1−t.

Since the operator T acts nontrivially only on the first and last qubits of |·⟩s+1−t, the construction
reduces to finding a two-qubit permutation T̃ such that

T̃ |00⟩ = |00⟩, and T̃ |10⟩ = |01⟩.

Therefore, T̃ must be of the form

T̃ =


1 0 0 0
0 0 1 0
0 ∗ 0 ∗
0 ∗ 0 ∗

 .
Restricting to the permutation matrices, only two candidates exist:

T̃ 1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , T̃ 2 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 . (2)

Here, T̃ 1 is exactly the SWAP gate, requiring 3 CNOT gates. In contrast, T̃ 2 factorizes as

T̃ 2 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ·


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (3)

which is the product of two CNOT gates. Therefore, the better choice is T̃ = T̃ 2, and consequently T
(and hence P) can be implemented using 2 CNOT gates. Since the overall circuit Π requires (d− 1)
such permutations, the total cost is 2(d− 1) CNOT gates.

2. Case M > 2s−1: let N = 2s −M . We choose P as

P =


IM 0 0 0
0 0 IM 0
0 0 0 IN

0 IN 0 0

 = P 1

[
P 2

I2s

]
, (4)

where

P 1 :=


0 IM 0 0
0 0 IM 0
0 0 0 IN

IN 0 0 0

 ∈ R2s+1×2s+1
, P 2 :=

[
0 IN

IM 0

]
∈ R2s×2s

.

By construction, P 1 and P 2 are cyclic shift operators:

P 1|i⟩ = |(i−N) mod 2s+1⟩, ∀i ∈ {0, . . . , 2s+1 − 1},
P 2|j⟩ = |(j −M) mod 2s⟩, ∀j ∈ {0, . . . , 2s − 1}.

By Theorem 2, both P 1 and P 2 can be implemented using O(s2) elementary gates. Since P 2 is the
top-left block of the second matrix in (4), we need the controlled version of P 2, which can also be
implemented using O(s2) elementary gates. Hence P also has gate complexity O(s2). Consequently,
the full transformation Π can be implemented with gate complexity O(ds2).

5

3. Case 2t−1 < M < 2t for some t < s: we first embed ai ∈ CM into a 2t-dimensional vector

ãi :=
[
ai

∗

]
∈ C2t

,

so that ãi conincides with the top 2t-dimensional block of vi. Now consider two consecutive blocks
vi,vi+1. By applying the construction from the case M = 2t, we can transform the vector

[
vi

vi+1

]
7→


ãi

ãi+1
∗
∗


using 2 CNOT gates. Next, we restrict attention to the top two blocks[

ãi

ãi+1

]
∈ C2t+1

.

By applying the construction from the case M > 2s−1, we can transform it into the desired form using
O(t2) elementary gates. Therefore, the total gate complexity of implementing P is O(t2), and the
overall gate complexity of Π is O(dt2).

The idea of Theorem 3 naturally extends to block-structured matrices: by applying suitable permutations to
both the rows and columns, we can align the desired submatrices into the top-left corner of a larger matrix.
The following corollary formalizes this extension.

Corollary 4. Suppose the matrix V ij has the form

V ij =
[
Aij ∗
∗ ∗

]
∈ C2s1 ×2s2

, ∀i = 0, . . . , 2d1 − 1, j = 0, . . . , 2d2 − 1,

where Aij ∈ CM1×M2 . Define

D1 = 2d1 , D2 = 2d2 , V =

 V 11 · · · V 1,D2−1
...

...
V D1−1,1 · · · V D1−1,D2−1

 .
Then, there exist quantum circuits Π1 and Π2 such that

Π1V Π†
2 =


A11 · · · A1,D2−1 ∗
...

... ∗
AD1−1,1 · · · AD1−1,D2−1 ∗

∗ · · · ∗ ∗

 .
In general, the gate complexity of implementing Πα is O(dα(logMα)2) for α ∈ {1, 2}. In the special case
where Mα is a power of two, the gate complexity reduces to O(dα).

To obtain the block-encoding [
B ⊗ C ∗

∗ ∗

]
,

from UB ⊗ UC , we first define

d1 = min{d ∈ N : 2d ≥ Mb}, and d2 = min{d ∈ N : 2d ≥ Nb},

6

|0⟩b−s UB

|0⟩c−s

UC

|ψ⟩s UB

Figure 1: Quantum circuit for standard implementation of matrix-matrix product.

and denote the top-left 2d1 ×2d2 block of UB as B̃. The desired matrix B ⊗C is the top-left MbMc ×NbNc

block of [
B̃ ⊗ C ∗

∗ ∗

]
.

Notice that
b̃ijUC =

[
b̃ijC ∗

∗ ∗

]
∈ C2c×2c

, ∀i = 0, . . . , 2d1−1, j = 0, . . . , 2d2 − 1,

where b̃ij denotes the (i, j)-entry of B̃, b̃ijC ∈ CMc×Nc , and thus

UB ⊗ UC =
[
B̃ ⊗ UC ∗

∗ ∗

]
.

In general, applying Theorem 4 yields the desired block-encoding with gate complexity

O
(

logMb (logMc)2 + logNb (logNc)2
)
,

which can be reduced to O (logMbNb) if Mc and Nc are powers of two.

Remark 1. The method of [21] implements block-encodings of Kronecker products, but it is restricted to
the setting where both B and C are square matrices with power-of-two dimensions. In its construction
[21], the target blocks are moved to the top-left corner using SWAP operators, each of which requires three
CNOT gates. We extend this construction to the more general case where B and C are of arbitrary sizes.
When both the row and column dimensions of C are powers of two, our circuit retains the same structure as
in [21] but substitutes the SWAP operator with the two-CNOT operator T̃ 2 from eq. (3), thereby reducing
the two-qubit gate count.

2.2. Matrix-matrix product
Let B ∈ CM×K , C ∈ CK×N , and suppose we have block-encodings

UB =
[
B ∗
∗ ∗

]
∈ C2b×2b

, UC =
[
C ∗
∗ ∗

]
∈ C2c×2c

.

Our goal is to construct a block-encoding of the product BC. Even if b = c, a direct multiplication does
not suffice, since

UBUC =
[
BC + ∗ ∗

∗ ∗

]
,

so the top-left block contains undesired terms. In the special case where M = K = N = 2s, the standard
construction [9] empolys the circuit shown in Figure 1. This construction can be understood in terms of
matrix representation: additional ancilla qubits enforce zero-padding in UB and UC so that the unwanted
terms ∗ are eliminated. However, this procedure introduces more zero-padding than necessary, thereby
consuming extra qubits and leading to inefficiency.

In the following proposition, we present a qubit-efficient method to construct block-encodings of matrix
products. Our approach applies to general rectangular compatiable matrices B and C.

7

Proposition 5. Let B ∈ CM×K , C ∈ CK×N , and suppose we are given block-encodings

UB =
[
B ∗
∗ ∗

]
∈ C2b×2b

, UC =
[
C ∗
∗ ∗

]
∈ C2c×2c

.

Then there exists a quantum circuit that implements the block-encoding of BC using max{b, c} + 1 qubits,
with an additional gate complexity of O(min{b2, c2}) beyond that required for implementing UB and UC

Proof. We begin with two simple cases:

• If K = 2b, then (I2c−b ⊗ UB)UC block-encodes BC.

• If K = 2c, then UB (I2b−c ⊗ UC) block-encodes BC.

In both cases, the block-encoding of BC requires only max{b, c} qubits, with no additional gate complexity
beyond that of UB and UC .

In the nontrivial case K < min{2b, 2c}, we assume without loss of generality that b ≥ c. (If b < c,
one may instead construct a block-encoding of C†B† and then invert the circuit.) We define the auxiliary
block-encoding

U
C̃

=
[
C̃ ∗
∗ ∗

]
∈ C2t×2t

, where C̃ =
[
C
0

]
∈ C2b×N , t = max{b, c} + 1 = b+ 1.

Then,
(I2 ⊗ UB) U

C̃
=
[
BC ∗

∗ ∗

]
,

is the desired block-encoding of the product BC. Note that the resulting block-encoding costs only one
more qubit than UB. It remains to show how to construct the block-encoding U

C̃
. We begin with the

Kronecker product I2t−c ⊗ UC , whose first N columns take the form

C
∗
0
0
...
0
0


= |0t−c⟩ ⊗

[
C
∗

]
=: V .

Our goal is to rearrange V into a block structure where C is isolated at the top, separated by at least 2b −K
rows of zeros from the ∗ terms. More precisely, we seek a t-qubit permutation P such that

P V = |0⟩ ⊗ |0t−c−1⟩ ⊗
[
C
0

]
+ |1⟩ ⊗ |0t−c−1⟩ ⊗

[
0
∗

]
. (5)

Notice that only the first qubit and the last c qubits are involved in this transformation; the intermediate
t − c − 1 qubits remain untouched. Therefore, it suffices to define a permutation acting on these (c + 1)
qubits. In the computational basis of these qubits, consider

P̃ :=


IK 0 0 0
0 0 0 IL

0 0 IK 0
0 IL 0 0

 ∈ R2c+1×2c+1
, L = 2c+1 −K.

This permutation achieves the transformation

|0⟩ ⊗
[
C
∗

]
P̃−→ |0⟩ ⊗

[
C
0

]
+ |1⟩ ⊗

[
0
∗

]
,

8

|0⟩1 X

|0⟩b−c

UB|0⟩c−s
UC

|ψ⟩s ︸ ︷︷ ︸
Permutation P

Figure 2: Quantum circuit for qubit-efficient implementation of matrix-matrix product. The subscript of each ket indicates
the number of qubits in that ket.

which matches exactly the desired block structure in eq. (5). For implementation, P̃ can be factorized as

P̃ =


0 0 0 IK

IL 0 0 0
0 IK 0 0
0 0 IL 0

([0 1
1 0

]
⊗
[

0 IL

IK 0

])
.

Each factor can be implemented using Theorem 2 with gate complexity O(c2). Since t − 1 = b, it follows
that P (I2t−c ⊗ UC) is a block-encoding of U

C̃
, and thus

(I2 ⊗ UB) P (I2t−c ⊗ UC)

provides a block-encoding of BC. In summary, this block-encoding requires max{b, c} + 1 qubits and can
be implemented with O

(
min{b2, c2}

)
gate complexity.

Example 1. Suppose M = K = N = 2s. In this case, we can choose

P̃ =


1 0 0 0
0 0 0 I2c−s−1
0 0 1 0
0 I2c−s−1 0 0

⊗ I2s ,

which can be implemented using a single NOT gate and a multi-controlled NOT gate. The quantum circuit
for the block-encoding of BC is then given in Figure 2. To verify correctness, consider its action on the
input state |0⟩b−s+1|ψ⟩s:

|0⟩1|0⟩b−c|0⟩c−s|ψ⟩s −→ |1⟩1|0⟩b−c (|0⟩c−sC|ψ⟩s + |g⟩c)
−→ |0⟩1|0⟩b−c|0⟩c−sC|ψ⟩s + |1⟩1|0⟩b−c|g⟩c

−→ |0⟩1|0⟩b−c|0⟩c−sBC|ψ⟩s + |0⟩1|g′⟩b + |1⟩1|g′′⟩b,

where |g⟩c is orthogonal to |0⟩c−s ⊗ I2s , and |g′⟩b is orthogonal to |0⟩b−s ⊗ I2s .

Remark 2. The existing method for implementing matrix-matrix product of block-encoded matrices [9]
applies only to the case where both matrices are square of the same size, and this dimension must be
a power of two. In contrast, our method generalizes to arbitrary matrix sizes without such restrictions.
Below, we provide a comparison of the required number of qubits and the gate complexity between the two
approaches.

Suppose M = K = N = 2s are powers of two. The existing method requires b+ c− s qubits, while our
method requires

t = max{b, c} + 1

9

qubits. Since 2s = K < 2min{b,c}, we have

b+ c− s > b+ c− min{b, c} = max{b, c},

and thus
b+ c− s ≥ max{b, c} + 1.

Therefore, our method always uses fewer qubits. Regarding the gate complexity, the existing method does
not incur additional costs beyond the block-encodings UB and UC . In contrast, our method requires
O(min{b2, c2}) elementary quantum gates in general.

Remark 3. A qubit-efficient implementation of the Kronecker product, inspired by our matrix-matrix
product construction, is described in Appendix A.

2.2.1. Product of a sequence of matrices
The qubit-efficient advantage of our method becomes more pronounced when considering the product

of a sequence of matrices. Suppose we are given matrices A1, . . . ,An ∈ C2s×2s , and their block-encodings
have sizes 2a1 × 2a1 , . . . , 2an × 2an , respectively. Without loss of generality, assume s < ai for all i. Our goal
is to construct a block-encoding of the product A1A2 · · · An.

If we apply the existing method [9] iteratively, the required number of qubits is
∑n

i=1 ai − (n−1)s. Since
s < ai for all i, this number scales as max1≤i≤n ai + O(n − 1). In contrast, our method can reduce the
additive overhead from O(n− 1) to ⌈log2 n⌉. This improvement relies on choosing an optimal multiplication
order via dynamic programming. Define mij as the minimum number of qubits required to block-encode
the product AiAi+1 · · · Aj . Then mij satisfies the recurrence

mij = min
i≤r<j

{max {mir,mr+1,j} + 1} . (6)

We now show by induction that

mij ≤ max
i≤r≤j

ar + ⌈log2(j − i+ 1)⌉ . (7)

For j = i+ 1,
mi,i+1 = max {ai, ai+1} + 1,

which clearly satisfies eq. (7). Suppose the bound holds for all intervals with length samller than k. Then
for j = i+ k and i ≤ r < j, we have

mij ≤ max {mir,mr+1,j} + 1

≤ max
{

max
i≤l≤r

al + ⌈log2(r − i+ 1)⌉ , max
r+1≤l≤j

al + ⌈log2(j − r)⌉
}

+ 1

≤ max
i≤l≤j

al + max {⌈log2(r − i+ 1)⌉ , ⌈log2(j − r)⌉} + 1.

Note that there exists an index r∗ such that the two subintervals [i, r∗] and [r∗ + 1, j] are approximately
balanced in length. In particular, we can choose r∗ so that

max{r∗ − i+ 1, j − r∗} ≤
⌈
j − i+ 1

2

⌉
.

For the choice of r∗, we obtain

max {⌈log2(r∗ − i+ 1)⌉ , ⌈log2(j − r∗)⌉} + 1 ≤
⌈

log2

(⌈
j − i+ 1

2

⌉)
+ 1
⌉
.

Now we analyze the right-hand side depending on the parity of j − i+ 1:

10

• If j − i+ 1 is even, then ⌈
log2

⌈
j − i+ 1

2

⌉
+ 1
⌉

= ⌈log2(j − i+ 1)⌉ .

• If j − i+ 1 is odd, then⌈
log2

⌈
j − i+ 1

2

⌉
+ 1
⌉

= ⌈log2(j − i+ 2)⌉ = ⌈log2(j − i+ 1)⌉ ,

where the second equality holds due to j − i+ 1 is odd and j > i+ 1.

Therefore, in both cases, we have

max {⌈log2(r∗ − i+ 1)⌉ , ⌈log2(j − r∗)⌉} + 1 ≤ ⌈log2(j − i+ 1)⌉ .

Substitute this bound into the recurrence gives

mij ≤ max
i≤l≤j

al + ⌈log2(j − i+ 1)⌉ , ∀j > i+ 1.

Together with the base case j = i + 1, this complete the induction for eq. (7). In particular, for the full
product we obtain

m1n ≤ max
1≤r≤n

ar + ⌈log2 n⌉ .

Moreover, a simple upper bound to the additional gate complexity is

O

(
n
(

logn+ max
i
ai − a

)2
)
.

Since the baseline cost of implementing n block-encodings is Ω(n), this additional overhead grows only
polylogarithmically and is therefore acceptable.

2.3. Hadamard product
In this section, we extend the implementation of the Hadamard product proposed in [22] to matrices of

arbitrary dimensions. In addition, we present implementations for convolution operation and vectorization
operator, which are closely related to the construction of the Hadamard product.

Let B,C ∈ CM×N be two matrices. Suppose the block-encodings of B and C are, respectively,

UB =
[
B ∗
∗ ∗

]
∈ C2b×2b

, UC =
[
C ∗
∗ ∗

]
∈ C2c×2c

Without loss of generality, we assume M = 2l and N = 2r, since the block-encoding of the Hadamard
product for B and C can be obtained from that of the corresponding top-left submatrices of UB and UC

that contain B and C. Let ◦ denote the Hadamard product, we have

B ◦ C =
M−1∑
i=0

N−1∑
j=0

bijcij |i⟩l⟨j|r

=
M−1∑
i=0

N−1∑
j=0

|i⟩l (⟨i|bUB|j⟩b⟨i|cUC |j⟩c) ⟨j|r

=
M−1∑
i=0

N−1∑
j=0

|i⟩l (⟨i|b ⊗ ⟨i|c) (UB ⊗ UC) (|j⟩b ⊗ |j⟩c) ⟨j|r

=
(

M−1∑
i=0

|i⟩l (⟨i|b ⊗ ⟨i|c)
)

(UB ⊗ UC)

N−1∑
j=0

(|j⟩b ⊗ |j⟩c) ⟨j|r

 ,

11

where the subscript denotes the number of qubits in that ket (or bra). Define

T r :=
N−1∑
j=0

(|j⟩b ⊗ |j⟩c) ⟨j|r. (8)

To encode T r into quantum circuit, let P r satisfy

P r|0⟩b ⊗ |j⟩c = |j⟩b ⊗ |j⟩c, ∀j = 0, . . . , 2r − 1.

The operator P r replicates the bit string stored in the register |·⟩c into the register |·⟩b. In general, this
operation requires c CNOT gates. However, since we only need to handle the bit strings smaller than 2r −1,
it suffices to use r CNOT gates. Then, we obtain

P r (|0⟩b+c−r ⊗ I2r) =
2r−1∑
j=0

P r (|0⟩b+c−r ⊗ |j⟩r⟨j|r) =
2r−1∑
j=0

P r (|0⟩b+c−r ⊗ |j⟩r) (1 ⊗ ⟨j|r)

=
2r−1∑
j=0

P r (|0⟩b ⊗ |j⟩c) ⟨j|r =
2r−1∑
j=0

(|j⟩b ⊗ |j⟩c) ⟨j|r,

where we combine the last c− r qubits in |0⟩b+c−r with |j⟩r to get |j⟩c in the third equality. Since N = 2r,
the first N columns of P r coincide with T r. Similarly, the operator

T l :=
M−1∑
i=0

(|i⟩b ⊗ |i⟩c) ⟨i|l

can be encoded as the first M columns of a permutation matrix P l, which can be implemented using l
CNOT gates. Finally,

P †
l (UB ⊗ UC) P r =

[
T †

l

∗

]
(UB ⊗ UC)

[
T r ∗

]
=
[
T †

l (UB ⊗ UC) T r ∗
∗ ∗

]
=
[
B ◦ C ∗

∗ ∗

]
.

Hence, the Hadamard product of two block-encodings can be realized using l + r = O(log(MN)) CNOT
gates.

2.3.1. Convolution
Let

|ψ⟩ =
2n−1∑
i=0

ψi|i⟩, |φ⟩ =
2n−1∑
i=0

φi|i⟩.

Our goal is to prepare the quantum state encoding their discrete convolution,

|ψ ∗ φ⟩ = 1
c

2n−1∑
i=0

(ψ ∗ φ)i|i⟩,

where c is a normalization factor. Using the standard relation between convolution and Fourier transform
F , we have

ψ ∗ φ = F−1 (F(ψ) ◦ F(φ)) ,
where ◦ denotes the element-eise (Hadamard) product. This relation naturally motivates a quantum im-
plementation: one first applies the Quantum Fourier Transform (QFT) to both input states, performs the
Hadamard product in the Fourier domain, and finally applies the inverse QFT to obtain the convolution.

12

QFT

|0⟩

...
. . .

...

|0⟩

|ψ⟩

QFT

•

QFT †...
. . .

...

•

|φ⟩

Figure 3: Quantum circuit of convolution. The Hadamard product between two quantum states appears as a special case of
the Hadamard product between block-encodings. Here, n CNOT gates implement P l, while P r reduces to the identity since
a quantum state has row dimension one.

The corresponding quantum circuit is shown in Figure 3. The two registers are initialized in |ψ⟩ and |φ⟩.
Applying the QFT in parallel transforms both registers into the Fourier basis. At this stage, a sequence of
n CNOT gates performs the Hadamard product between the transformed amplitudes. Finally, the inverse
QFT is applied to the second register, thereby producing the quantum state corresponding to the convolution
in the computational basis. Upon measuring the first register and obtaining |0⟩, the second register collapses
to the state |ψ ∗φ⟩. The overall cost is dominated by the QFT and its inverse, each of which requires O(n2)
one- and two-qubit gates in the standard implementation. Therefore, the gate complexity of the convolution
procedure is O(n2).

In summary, this construction shows how the well-known convolution-Fourier duality can be translated
into the quantum setting, leveraging the Hadamard product between block-encodings together with efficient
implementations of the QFT.

2.3.2. Vectorization
Given a matrix

A =
[
a0 a1 · · · aN−1

]
∈ CM×N ,

the operator vec(·) stacks the columns of A into a single long vector:

vec(A) :=


a0
a1
...

aN−1

 ∈ CMN .

Our goal is to construct a block-encoding of vec(A) given a block-encoding of A.
Assume first that N = 2r, and let UA ∈ C2a×2a be a block-encoding of A. Consider the stacked action

of the first N columns of UA,
UA|0⟩a

UA|1⟩a

...
UA|N − 1⟩a

 = (IN ⊗ UA)


|0⟩a

|1⟩a

. . .

|N − 1⟩a




1
1
...
1

 .

13

Π

. . .

|·⟩r

UA

H⊗r

•


|·⟩a

...
. . .

...

•

Figure 4: Quantum circuit of vectorization. The Hadamard layer prepares the uniform superposition, the CNOT chain realizes
T r, and the permutation Π (from Theorem 3) gathers the ai blocks contiguously, resulting in a block-encoding of vec(A).

The block-diagonal operator in the middle can be expressed as
|0⟩a

|1⟩a

. . .

|N − 1⟩a

 =
N−1∑
j=0

(|j⟩r⟨j|r) ⊗ |j⟩a =
N−1∑
j=0

(|j⟩r ⊗ |j⟩a) ⟨j|r,

which has the same form as T r introduced in eq. (8). This observation allows us to block-encode it into a
simple permutation using r CNOT gates. The all-ones vector of length N appearing on the right-hand side
is proportional to the first column of H⊗r, where H is the Hadamard gate. Hence, applying H⊗r to |0⟩r

prepares the required uniform superposition. The resulting stacked vector takes the form


UA|0⟩a

UA|1⟩a

...
UA|N − 1⟩a

 =



a0
∗

a1
∗
...

aN−1
∗


,

where ∗ represents additional ancillary components. By applying the permutation described in Theorem 3,
these unwanted components can be rearranged so that the ai blocks appear contiguously, giving precisely
the block-encoding of vec(A). The full construction is illustrated in Figure 4.

For the case where N is not a power of two, one can take the smallest r such that 2r > N , and thus the
same procedure yields the block-encoding of vec(A). The additional gate complexity beyond that of UA is
dominated by the final permutation Π, which, by Theorem 3, can be performed with gate complexity

O
(
r(logM)2) = O

(
logN(logM)2) .

If M happens to be a power of two, the bound improves to O(logN).

3. Applications

Matrix products—including the matrix-matrix multiplication, the Kronecker product, and the Hadamard
product—are fundamental operations in linear algebra and arises in a variety of contexts. Block-encoding,
in turn, is a key primitive in many quantum algorithms, such as Hamiltonian simulation, quantum singular
value transformation (QSVT), quantum linear system algorithms (QLSAs), and quantum walks. Naturally,
matrix products between block-encodings also occur frequently in quantum computing. In this section, we
present several applications of such products.

14

Bit string 10 · · · 01 · · · 11 · · · 11 00 · · · 00 00 · · · 01 · · · 10 · · · 00
Integer −2nb−1 + 1 · · · −1 0 1 · · · 2nb−1

Table 1: The correspondence between bit strings and integers.

3.1. Time-dependent Hamiltonian Simulation
In [2], a low-space-overhead simulation algorithm based on the truncated Dyson series is proposed for

time-dependent quantum dynamics. To reduce space requirements, a compression gadget is introduced.

Lemma 6 (Lemma 13 in [2]). Let {Uk : k ∈ [K]} be a set of K unitaries that encode matrices Hk ∈
C2ns ×2ns such that

(⟨0|a ⊗ Is) Uk (|0⟩a ⊗ Is) = Hk, ∥Hk∥ ≤ 1, |0⟩a ∈ C2na
.

Then there exists a quantum circuit V such that on input states spanned by {|k⟩b : k ∈ {0, . . . ,K}},

(⟨0|ac ⊗ Is) V (|0⟩ac ⊗ Is) = |0⟩⟨0|b ⊗ Is +
K∑

k=1
|k⟩⟨k|b ⊗

 k∏
j=1

Hj

 , |k⟩b ∈ C2nb
, |0⟩c ∈ C2nc

,

where the number of qubits nb ∈ O(nc) = O(logK) and
k∏

j=1
Hj := HkHk−1 · · · H2H1.

The cost of V is one query to each controlled-controlled-Uk, and O(K(na + logK)) additional primitive
quantum gates.

In the truncated Dyson series approach for time-dependent Hamiltonians, one often needs to implement
sequential products of many Hamiltonian terms, controlled on an index register that select which terms
appear in the series. Theorem 6 from [2] guarantees that these products can be implemented with expo-
nentially fewer ancillary qubits than a naïve implementation, while keeping gate complexity linear in the
number of terms. Following the qubit-efficient approach for implementing matrix-matrix products, we pro-
vide a simpler construction of V that only uses controlled-Uk. The asymptotic gate complexity remains the
same as in the original method, but redundant controls are eliminated, yielding a more concise quantum
circuit. Here is our construction.

Let T p,q, with 1 ≤ p ≤ q ≤ K, denote a quantum circuit that performs the transformation:

T p,q|0⟩c|k⟩b|0⟩a|ψ⟩s = |0⟩c|k − q + p− 1⟩b|0⟩a

min{q,p+k−1}∏
j=p

Hj

 |ψ⟩s + |g⟩, ∀1 − p ≤ k ≤ K,

where the arithmetic in |·⟩b is modulo 2nb , and |g⟩ is orthogonal to the subspace |0⟩c ⊗ Ib ⊗ |0⟩a ⊗ Is. To be
clarified, in Table 1, we list the correspondence between bit strings and integers in the register |·⟩b. Then,
if nb ≥ 1 + log2 K, we have

T 1,K |0⟩c|k⟩b|0⟩a|ψ⟩s = |0⟩c|k −K⟩b|0⟩a

 k∏
j=1

Hj

 |ψ⟩s + |g⟩, ∀0 ≤ k ≤ K,

and thus the quantum circuit V can be chosen as

ADDK
b T 1,K ,

where ADDK
b adds the integer K to the register |·⟩b. The construction of T 1,K proceeds in three steps:

15

ADD†
b

|k⟩b
...

...

|0⟩a
Up

|ψ⟩s

(a) The quantum circuit for T p,p.

|0⟩1 X

|0⟩c

T p,q T q+1,w

|k⟩b

|0⟩a

|ψ⟩s

(b) Implementing T p,w by composing T p,q and T q+1,w.

Figure 5: Illustration of the two main steps for constructing T 1,K . (a) base case and (b) recursive composition.

1. Base case: T p,p can be implemented using the circuit shown in Figure 5a. The gate ADD†
b acts as a

decrement (minus-one) operator on the register |·⟩b, and can be implemented in two ways according
to Theorem 2. For consistency with the analysis in [2], we assume that ADD†

b is implemented using
O(nb) gates and nb + 1 ancilla qubits. The operator Up is controlled by the most significant qubit in
|·⟩b. Specifically, if k ≤ 0, the most significant qubit of |k − 1⟩b is 1 and thus the output is

|k − 1⟩b|0⟩a|ψ⟩s.

For 1 ≤ k ≤ K ≤ 2nb−1, the most significant qubit of |k − 1⟩b is 0 and the output is

|k − 1⟩b|0⟩aHp|ψ⟩s + |g⟩.

In conclusion, the circuit shown in Figure 5a correctly realizes T p,p.
2. Recursive composition: Given circuits for T p,q and T q+1,w, we can construct T p,w as shown in

Figure 5b. For 1 − p ≤ k ≤ K, applying this composition to |0⟩c|k⟩b|0⟩a|ψ⟩s gives

|0⟩c|k⟩b|0⟩a|ψ⟩s −→ |0⟩1

|0⟩c|k − q + p− 1⟩b|0⟩a

min{q,p+k−1}∏
j=p

Hj

 |ψ⟩s + |g⟩


−→ |0⟩1|0⟩c|k − q + p− 1⟩b|0⟩a

min{q,p+k−1}∏
j=p

Hj

 |ψ⟩s + |1⟩1|g⟩

−→ |0⟩1

|0⟩c|k − w + p− 1⟩b|0⟩a

min{w,p+k−1}∏
i=q+1

Hi

min{q,p+k−1}∏
j=p

Hj

 |ψ⟩s + |g′⟩

+ |1⟩1|g′′⟩

= |0⟩1|0⟩c|k − w + p− 1⟩b|0⟩a

min{w,p+k−1}∏
j=p

Hj

 |ψ⟩s + (|0⟩1|g′⟩ + |1⟩1|g′′⟩) ,

where |0⟩1|g′⟩ + |1⟩1|g′′⟩ is orthogonal to the subspace |0⟩1|0⟩c ⊗ Ib ⊗ |0⟩a ⊗ Is, verifying that the
circuit implements T p,w. This recursive composition requires one additional ancilla qubit and one
multi-controlled NOT gate, which can be implemented using O(na + nc) primitive gates with a few
ancillas.

3. Full construction: Let nb = ⌈log2 K⌉ + 1. Starting from T p,p circuits, we can construct T 1,K using
⌈log2 K⌉ ancilla qubits. Thus, nc can be chosen as ⌈log2 K⌉. The overall cost is one query to each
controlled-Uk and O(K(logK + na)) additional primitive quantum gates.

3.2. Block-encoding matrices with Kronecker-sum structure
It is often the case that matrices of practical interest exhibit a Kronecker-sum structure, meaning they

can be expressed as a sum of Kronecker products. By identifying and exploiting this structure, together

16

with our method for implementing Kronecker products, the task of block-encoding a complicated matrix
can be reduced to block-encoding several simpler matrices. We demonstrate this approach through several
representative examples.

3.2.1. Generalized Sylvester equation
The generalized Sylvester equation, typically expressed as

m∑
k=1

AkXBk = C,

where Ak,Bk and C are known matrices and X is unknown, arises naturally in a wide range of scientific
and engineering applications [4]. Exploiting the vectorization identity

vec(AXB) = (BT ⊗ A)vec(X),

the equation can be reformulated as the linear system(
m∑

k=1
BT

k ⊗ Ak

)
vec(X) = vec(C).

Given block-encodings of Ak, Bk, and C, one can first construct block-encodings of BT
k ⊗ Ak’s, and then

apply the LCU method [9] to obtain the block-encoding of
m∑

k=0
BT

k ⊗ Ak.

Further, the block-encoding of vec(C) can be constructed directly from the block-encoding of C, as described
in Section 2.3.2. Equipped with these block-encodings, the generalized Sylvester equation can then be solved
on a quantum computer using QLSAs.

3.2.2. Discretised differential operators
Differential equations are widely used to model physical processes. As the dimension increases, the size

of the discretised matrix grows exponentially. However, many such matrices can be expressed as a sum of
Kronecker products, which makes them well-suited for efficient block-encoding.

As a concrete example, consider the problem of pricing multi-asset derivatives by solving the Black-
Scholes partial differential equation (PDE) using the finite-difference method. This task suffers from the
curse of dimensionality, namely the exponential growth of computational complexity with the number of
underlying assets. In [19], the authors present a quantum algorithm for this problem. By discretising the
spatial variables in the Black-Scholes PDE, the problem is reformulated as an ODE system:

d
dτ y(τ) = F y(τ) + c(τ),

where c(τ) encodes the inhomogeneous contributions from boundary conditions, and the coefficient matrix
F admits a Kronecker-sum structure:

F := F 2nd + F 1st,

F 2nd :=
d∑

i=1

σ2
i

2h2
i

I⊗i−1 ⊗ D2nd ⊗ I⊗d−i +
d−1∑
i=1

d∑
j=i+1

σiσjρij

4hihj
I⊗i−1 ⊗ D1st ⊗ I⊗j−i−1 ⊗ D1st ⊗ I⊗d−j ,

F 1st :=
d∑

i=1

1
2hi

(
r − 1

2σ
2
i

)
I⊗i−1 ⊗ D1st ⊗ I⊗d−i,

17

where d is the number of assets, σi, hi, ρij , r are given real parameters, I denotes the identity matrix. The
one-dimensional finite-difference matrices for first- and second-order derivatives are

D1st :=



0 1
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
−1 0


, D2nd :=



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


.

To solve such ODEs on a quantum computer, the state-of-the-art approaches rely on efficient block-
encodings of the coefficient matrix [30, 24, 31]. The block-encodings of D1st and D2nd can be efficiently
implemented by the method of [11]. Once the two block-encodings are available, the block-encoding of F
follows naturally from its Kronecker-sum structure, combined with the LCU method.

3.2.3. Adjacent matrix of extended binary tree.
Consider the adjacent matrix of an extended binary tree, given by

A =



γ β
β α β β

β α β β
β α β β

β γ
β γ

β γ
β γ


, (9)

where α, β, γ ∈ (0, 1). Block-encodings of such matrices were analyzed in [11]. Here we show that a more
efficient block-encoding can be obtained by expressing A as a sum of Kronecker products. Specifically, we
decompose A as

A =



β
β

β
β

β
β

β 0 0 0 0
β 0 0 0 0


+



β β
β β

β β
β β
0 0
0 0
0 0
0 0


+



γ − 2β
α

α
α

γ
γ

γ
γ


.

(10)
The first matrix in Equation (10) can be written as a Kronecker product:

√
2β


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⊗

[
1√

2
1√

2

]
=:

√
2βB ⊗ C.

18

|0⟩
P †

|j2⟩
P †

|j1⟩
P †

|j0⟩ H

(a) Quantum circuit of U1.

|0⟩ Ry(θ0) Ry(θ1) Ry(θ2)

|j2⟩ •
|j1⟩
|j0⟩

(b) Quantum circuit of U2.

Figure 6: Block-encodings of the three matrices in the decomposition Equation (10). Subfigure (a) shows the block-encoding
of the first matrix, whose inverse gives that of the second matrix, while subfigure (b) shows the block-encoding of the third
matrix.

By Theorem 1, the block-encodings of B and C can be choosen as

I8 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, and H = 1√

2

[
1 1
1 −1

]
.

To convert I8 ⊗H into a block-encoding of B ⊗C, we apply Theorem 3 and obtain the permutation matrix

P =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 ,
which can be implemented with two CNOT gates. Consequently, the unitary

U1 := (I8 ⊗ H) ·
(

I4 ⊗ P †
)

·
(

I2 ⊗ P † ⊗ I2

)
·
(

P † ⊗ I4

)
serves as a block-encoding of B ⊗ C, and the corresponding quantum circuit is shown in Figure 6a. To
verify, note that P †|0b⟩ = |b0⟩, for all b ∈ {0, 1}. Applying the three P † layers followed by H gives

|0j2j1j0⟩ −→ |j20j1j0⟩ −→ |j2j10j0⟩ −→ |j2j1j00⟩

−→ 1√
2

|j2j1j0⟩ (|0⟩ + |1⟩) .

Taking the overlap with |0i2i1i0⟩ yields

⟨0i2i1i0|U1|0j2j1j0⟩ =


0, j2 = 1,

1√
2 , j2 = 0 and (i2, i1) = (j1, j0),

0, otherwise.

Equivalently, with j := 4j2 + 2j1 + j0 and i := 4i2 + 2i1 + i0, the nonzero entries appear precisely when
j2 = 0 and i ∈ {2j, 2j + 1}, each with value 1/

√
2. This exactly reproduces the structure of B ⊗ C.

In the same way, a block-encoding of the second matrix in Equation (10) can be obtained either by
direct construction or by taking the inverse of U1. Hence, block-encodings of the first two terms in the
decomposition are established.

19

|0⟩1 Z Ry(ζ) • Z Ry(ζ)

|0⟩1 H • H

|0⟩1
U1 U†

1 U2
|j⟩3

Figure 7: Block-encoding of the adjacent matrix of an extended binary tree.

For the third term in Equation (10), which is diagonal, we employ the block-encoding circuit U2 shown
in Figure 6b. Define

α̃ := cos θ0

2 , γ̃ := cos θ1

2 , γ̂ := cos θ0 + θ2

2 ,

then the top-left 8 × 8 block of U2 is

diag (γ̂, α̃, α̃, α̃, γ̃, γ̃, γ̃, γ̃) .

The parameters α̃, γ̃, γ̂ will be specified later. Next, we perform LCU on the block-encodings of the three
matrices, obtaining

xB ⊗ C + xBT ⊗ CT + (1 − 2x) diag (γ̂, α̃, α̃, α̃, γ̃, γ̃, γ̃, γ̃) = 1
c

A.

Here, the parameters x, c, γ̂, α̃, γ̃ are chosen such that
x√

2 = β
c ,

(1 − 2x)γ̂ +
√

2x = γ
c ,

(1 − 2x)γ̃ = γ
c ,

(1 − 2x)α̃ = α
c .

=⇒


x =

√
2β
c ,

γ̂ = γ−2β

c−2
√

2β
,

γ̃ = γ

c−2
√

2β
,

α̃ = α
c−2

√
2β
.

(11)

To implement this procedure on a quantum computer, the parameters must further satisfy

0 ≤ x ≤ 1
2 , |γ̂|, |α̃|, |γ̃| ≤ 1.

By choosing c = 2
√

2 + 2, these conditions can be fulfilled since α, β, γ ∈ (0, 1). For explicitly given values
of α, β, γ, one may select a smaller c. Setting ζ = 2 arccos

√
2x, we obtain

[Ry(ζ) · Z] ⊗H =
[√

2x
√

1 − 2x√
1 − 2x −

√
2x

]
⊗

[√
2

2

√
2

2√
2

2 −
√

2
2

]
=


√
x

√
x

√
1
2 − x

√
1
2 − x

√
x ∗ ∗ ∗√

1
2 − x ∗ ∗ ∗√
1
2 − x ∗ ∗ ∗

 .

In summary, the quantum circuit for the block-encoding of 1
cA is given in Figure 7. This construction

naturally generalizes to extended binary trees of greater depth. Suppose the tree has depth n. Then A
can be block-encoded using O(n2) quantum gates and 3 ancillary qubits. The O(n2) complexity arises
from the multi-controlled rotation Ry(θ2) required in block-encoding the diagonal part, while the remaining
components of the block-encoding can be implemented with only O(n) gates.

In the special case β ∈ (0, 1/3) with α = 1 − 3β and γ = 1 − β, i.e., when A is a symmetric stochastic
matrix, setting c = 1 suffices, and the block-encoding of A becomes exact. Moreover, in this regime we have

20

γ̂ = α̃, which allows us to eliminate the final multi-controlled rotation Ry(θ2) in Figure 6b. The overall gate
complexity of the block-encoding then reduces to O(n).

In contrast, the construction of [11] requires 5 ancilla qubits and a more involved circuit to obtain a
block-encoding with normalization c = 8. Our construction uses only 3 ancillas and achieves a strictly
better constant: in general we can choose c ≤ 2

√
2 + 2 < 5, and in favorable parameter regimes even c = 1.

This demonstrates the benefit of identifying and exploiting the Kronecker-sum structure.

4. Conclusion

In this work we developed new techniques for implementing matrix products within the block-encoding
framework, extending the scope and efficiency of existing constructions. First, we addressed the general
case where the matrices are not necessarily square and their dimensions are not restricted to powers of two,
thereby broadening the applicability of block-encoded operations. Second, we introduced a qubit-efficient
method for realizing matrix-matrix multiplications that significantly reduces ancilla requirements at the
cost of a modest increase in gate complexity. This improvement is particularly pronounced in the sequential
product setting, where the number of required ancilla qubits decreases exponentially. In addition, we refined
the implementation of the Kronecker product compared to prior work [21], replacing SWAP operations
with pairs of CNOT gates and thus lowering gate cost. By applying the same qubit-efficient principle
from our matrix-matrix multiplication construction, we also developed a qubit-efficient Kronecker product
implementation. Moreover, we rederived the Hadamard product between block-encodings and extend its
construction to the convolution operation and vectorization operator. Finally, we demonstrated the utility
of these basic product operations in applications such as time-dependent Hamiltonian simulation and the
block-encoding of the adjacent matrix of an extended binary tree, where our constructions yield concrete
resource reductions relative to existing approaches.

Taken together, our results enrich the toolbox for manipulating block-encodings, offering both qubit
efficiency and structural flexibility. Looking ahead, it will be of interest to integrate these techniques into
practical quantum algorithms—such as Hamiltonian simulation and quantum optimization—and to further
explore linear operations and their applications in emerging areas of quantum computational science.

Appendix A. Qubit-efficient implementation of Kronecker product

Similarly to the matrix-matrix product, the Kronecker product between block-encoded matrices admits
a qubit-efficient implementation.

For simplicity, consider first the case where B ∈ C2s×2s and C ∈ C2t×2t are square matrices whose
dimensions are powers of two, and let their block-encodings be UB ∈ C2b×2b and UC ∈ C2c×2c . Without
loss of generality, assume that UC uses more ancilla qubits, i.e., c− t > b− s. Noting that

B ⊗ C = (I2b ⊗ C) (B ⊗ I2c) ,

and the block-encodings of I2b ⊗ C and B ⊗ I2c are obtained directly from UC and UB, respectively, we
may apply the qubit-efficient matrix-matrix product construction to realize the block-encoding of B ⊗ C.
The resulting quantum circuit is presented in Figure A.8; it implements a block-encoding of B ⊗ C while
requiring only one additional ancilla qubit beyond those used by UB and UC . The effect of this circuit on
the input state |0⟩1|0⟩c−t|x⟩s|y⟩t is as follows:

|0⟩1|0⟩c−t|x⟩s|y⟩t −→ |1⟩1 (|0⟩c−tB|x⟩b|y⟩c + |g⟩)
−→ |0⟩1|0⟩c−tB|x⟩b|y⟩c + |1⟩1|g⟩
−→ |0⟩1|0⟩c−tB|x⟩bC|y⟩c + |0⟩1|g′⟩ + |1⟩1|g′′⟩,

where both of the last two terms are orthogonal to the subspace |0⟩c−t+1 ⊗ I2s+t . Consequently, the circuit
implements a block-encoding of B ⊗ C using only one additional ancilla qubit.

21

|0⟩1 X

|0⟩c−t−b+s
UC

|0⟩b−s
UB

|x⟩s

|y⟩t UC

Block-encoding
of B ⊗ I2c

Permutation Block-encoding
of I2b ⊗ C

Figure A.8: Quantum circuit for qubit-efficient implementation of the Kronecker product. Two barriers divide the circuit into
three phases. The left and right phases implement the block-encodings of B ⊗ I2c and I2b ⊗ C, respectively. The middle phase
applies the permutation used in Example 1.

For the general case where B and C have arbitrary sizes, the same construction applies after embedding
B and C into larger 2s × 2s and 2t × 2t blocks. The output registers |·⟩s and |·⟩t can then be rearranged as
in Section 2.1 so that B ⊗ C occupies the top-left corner of the overall unitary.

References

[1] D. W. Berry, A. M. Childs, R. Kothari, Hamiltonian simulation with nearly optimal dependence on all
parameters, in: Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), FOCS ’15, IEEE Computer Society, USA, 2015, p. 792–809. doi:10.1109/FOCS.
2015.54.
URL https://doi.org/10.1109/FOCS.2015.54

[2] G. H. Low, N. Wiebe, Hamiltonian simulation in the interaction picture (2019). arXiv:1805.00675.
URL https://arxiv.org/abs/1805.00675

[3] A. W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev.
Lett. 103 (2009) 150502. doi:10.1103/PhysRevLett.103.150502.
URL https://link.aps.org/doi/10.1103/PhysRevLett.103.150502

[4] V. Simoncini, Computational methods for linear matrix equations, SIAM Review 58 (3) (2016) 377–441.
arXiv:https://doi.org/10.1137/130912839, doi:10.1137/130912839.
URL https://doi.org/10.1137/130912839

[5] P. C. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, D. W. Berry, Optimal scaling quantum
linear-systems solver via discrete adiabatic theorem, PRX Quantum 3 (2022) 040303. doi:10.1103/
PRXQuantum.3.040303.
URL https://link.aps.org/doi/10.1103/PRXQuantum.3.040303

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning,
Nature 549 (7671) (2017) 195–202. doi:10.1038/nature23474.
URL https://doi.org/10.1038/nature23474

[7] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm (2014). arXiv:
1411.4028.
URL https://arxiv.org/abs/1411.4028

22

https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1109/FOCS.2015.54
https://arxiv.org/abs/1805.00675
http://arxiv.org/abs/1805.00675
https://arxiv.org/abs/1805.00675
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://doi.org/10.1137/130912839
http://arxiv.org/abs/https://doi.org/10.1137/130912839
https://doi.org/10.1137/130912839
https://doi.org/10.1137/130912839
https://link.aps.org/doi/10.1103/PRXQuantum.3.040303
https://link.aps.org/doi/10.1103/PRXQuantum.3.040303
https://doi.org/10.1103/PRXQuantum.3.040303
https://doi.org/10.1103/PRXQuantum.3.040303
https://link.aps.org/doi/10.1103/PRXQuantum.3.040303
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028

[8] T. Albash, D. A. Lidar, Adiabatic quantum computation, Rev. Mod. Phys. 90 (2018) 015002. doi:
10.1103/RevModPhys.90.015002.
URL https://link.aps.org/doi/10.1103/RevModPhys.90.015002

[9] A. Gilyén, Y. Su, G. H. Low, N. Wiebe, Quantum singular value transformation and beyond: exponen-
tial improvements for quantum matrix arithmetics, in: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Association for Computing Machinery, New York,
NY, USA, 2019, p. 193–204. doi:10.1145/3313276.3316366.
URL https://doi.org/10.1145/3313276.3316366

[10] G. H. Low, I. L. Chuang, Optimal hamiltonian simulation by quantum signal processing, Phys. Rev.
Lett. 118 (2017) 010501. doi:10.1103/PhysRevLett.118.010501.
URL https://link.aps.org/doi/10.1103/PhysRevLett.118.010501

[11] D. Camps, L. Lin, R. Van Beeumen, C. Yang, Explicit quantum circuits for block encodings of certain
sparse matrices, SIAM Journal on Matrix Analysis and Applications 45 (1) (2024) 801–827. arXiv:
https://doi.org/10.1137/22M1484298, doi:10.1137/22M1484298.
URL https://doi.org/10.1137/22M1484298

[12] C. Sünderhauf, E. Campbell, J. Camps, Block-encoding structured matrices for data input in quantum
computing, Quantum 8 (2024) 1226. doi:10.22331/q-2024-01-11-1226.
URL https://doi.org/10.22331/q-2024-01-11-1226

[13] D. Liu, W. Du, L. Lin, J. P. Vary, C. Yang, An efficient quantum circuit for block encoding a pairing
hamiltonian, Journal of Computational Science 85 (2025) 102480. doi:https://doi.org/10.1016/j.
jocs.2024.102480.
URL https://www.sciencedirect.com/science/article/pii/S1877750324002734

[14] D. Camps, R. Van Beeumen, Fable: Fast approximate quantum circuits for block-encodings, in: 2022
IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 104–113.
doi:10.1109/QCE53715.2022.00029.

[15] N. Guseynov, X. Huang, N. Liu, Efficient explicit gate construction of block-encoding for hamiltonians
needed for simulating partial differential equations (2025). arXiv:2405.12855.
URL https://arxiv.org/abs/2405.12855

[16] Q. T. Nguyen, B. T. Kiani, S. Lloyd, Block-encoding dense and full-rank kernels using hierarchical
matrices: applications in quantum numerical linear algebra, Quantum 6 (2022) 876. doi:10.22331/
q-2022-12-13-876.
URL https://doi.org/10.22331/q-2022-12-13-876

[17] C. Yang, Z. Li, H. Yao, Z. Fan, G. Zhang, J. Liu, Dictionary-based block encoding of sparse matrices
with low subnormalization and circuit depth (2025). arXiv:2405.18007, doi:https://doi.org/10.
22331/q-2025-07-22-1805.
URL https://arxiv.org/abs/2405.18007

[18] S. Jin, N. Liu, Y. Yu, Quantum circuits for the heat equation with physical boundary conditions via
schrödingerization, Journal of Computational Physics 538 (2025) 114138. doi:https://doi.org/10.
1016/j.jcp.2025.114138.
URL https://www.sciencedirect.com/science/article/pii/S0021999125004218

[19] K. Miyamoto, K. Kubo, Pricing Multi-Asset Derivatives by Finite-Difference Method on a Quantum
Computer , IEEE Transactions on Quantum Engineering 3 (01) (2022) 1–25. doi:10.1109/TQE.2021.
3128643.
URL https://doi.ieeecomputersociety.org/10.1109/TQE.2021.3128643

23

https://link.aps.org/doi/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://link.aps.org/doi/10.1103/RevModPhys.90.015002
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://link.aps.org/doi/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://link.aps.org/doi/10.1103/PhysRevLett.118.010501
https://doi.org/10.1137/22M1484298
https://doi.org/10.1137/22M1484298
http://arxiv.org/abs/https://doi.org/10.1137/22M1484298
http://arxiv.org/abs/https://doi.org/10.1137/22M1484298
https://doi.org/10.1137/22M1484298
https://doi.org/10.1137/22M1484298
https://doi.org/10.22331/q-2024-01-11-1226
https://doi.org/10.22331/q-2024-01-11-1226
https://doi.org/10.22331/q-2024-01-11-1226
https://doi.org/10.22331/q-2024-01-11-1226
https://www.sciencedirect.com/science/article/pii/S1877750324002734
https://www.sciencedirect.com/science/article/pii/S1877750324002734
https://doi.org/https://doi.org/10.1016/j.jocs.2024.102480
https://doi.org/https://doi.org/10.1016/j.jocs.2024.102480
https://www.sciencedirect.com/science/article/pii/S1877750324002734
https://doi.org/10.1109/QCE53715.2022.00029
https://arxiv.org/abs/2405.12855
https://arxiv.org/abs/2405.12855
http://arxiv.org/abs/2405.12855
https://arxiv.org/abs/2405.12855
https://doi.org/10.22331/q-2022-12-13-876
https://doi.org/10.22331/q-2022-12-13-876
https://doi.org/10.22331/q-2022-12-13-876
https://doi.org/10.22331/q-2022-12-13-876
https://doi.org/10.22331/q-2022-12-13-876
https://arxiv.org/abs/2405.18007
https://arxiv.org/abs/2405.18007
http://arxiv.org/abs/2405.18007
https://doi.org/https://doi.org/10.22331/q-2025-07-22-1805
https://doi.org/https://doi.org/10.22331/q-2025-07-22-1805
https://arxiv.org/abs/2405.18007
https://www.sciencedirect.com/science/article/pii/S0021999125004218
https://www.sciencedirect.com/science/article/pii/S0021999125004218
https://doi.org/https://doi.org/10.1016/j.jcp.2025.114138
https://doi.org/https://doi.org/10.1016/j.jcp.2025.114138
https://www.sciencedirect.com/science/article/pii/S0021999125004218
https://doi.ieeecomputersociety.org/10.1109/TQE.2021.3128643
https://doi.ieeecomputersociety.org/10.1109/TQE.2021.3128643
https://doi.org/10.1109/TQE.2021.3128643
https://doi.org/10.1109/TQE.2021.3128643
https://doi.ieeecomputersociety.org/10.1109/TQE.2021.3128643

[20] D. Dong, Y. Li, J. Xue, A quantum algorithm for linear autonomous differential equations via Padé
approximation, Quantum 9 (2025) 1770. doi:10.22331/q-2025-06-17-1770.
URL https://doi.org/10.22331/q-2025-06-17-1770

[21] D. Camps, R. Van Beeumen, Approximate quantum circuit synthesis using block encodings, Phys. Rev.
A 102 (2020) 052411. doi:10.1103/PhysRevA.102.052411.
URL https://link.aps.org/doi/10.1103/PhysRevA.102.052411

[22] N. Guo, Z. Yu, M. Choi, A. Agrawal, K. Nakaji, A. Aspuru-Guzik, P. Rebentrost, Quantum linear
algebra is all you need for transformer architectures (2024). arXiv:2402.16714.
URL https://arxiv.org/abs/2402.16714

[23] S. Jin, X. Li, N. Liu, Y. Yu, Quantum simulation for partial differential equations with physical
boundary or interface conditions, Journal of Computational Physics 498 (2024) 112707. doi:https:
//doi.org/10.1016/j.jcp.2023.112707.
URL https://www.sciencedirect.com/science/article/pii/S0021999123008021

[24] D. An, A. M. Childs, L. Lin, Quantum algorithm for linear non-unitary dynamics with near-optimal
dependence on all parameters (2023). arXiv:2312.03916.
URL https://arxiv.org/abs/2312.03916

[25] D. W. Berry, P. C. S. Costa, Quantum algorithm for time-dependent differential equations using Dyson
series, Quantum 8 (2024) 1369. doi:10.22331/q-2024-06-13-1369.
URL https://doi.org/10.22331/q-2024-06-13-1369

[26] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and
quantum approximate optimization algorithm, ACM Transactions on Quantum Computing 3 (2) (Mar.
2022). doi:10.1145/3498331.
URL https://doi.org/10.1145/3498331

[27] S. A. Cuccaro, T. G. Draper, S. A. Kutin, D. P. Moulton, A new quantum ripple-carry addition circuit
(2004). arXiv:quant-ph/0410184.
URL https://arxiv.org/abs/quant-ph/0410184

[28] T. G. Draper, Addition on a quantum computer (2000). arXiv:quant-ph/0008033.
URL https://arxiv.org/abs/quant-ph/0008033

[29] S. Beauregard, Circuit for shor’s algorithm using 2n+3 qubits (2003). arXiv:quant-ph/0205095.
URL https://arxiv.org/abs/quant-ph/0205095

[30] D. W. Berry, A. M. Childs, A. Ostrander, G. Wang, Quantum algorithm for linear differential
equations with exponentially improved dependence on precision, Communications in Mathemati-
cal Physics 356 (2017) 1057–1081. arXiv:https://doi.org/10.1007/s00220-017-3002-y, doi:
10.1007/s00220-017-3002-y.
URL https://doi.org/10.1007/s00220-017-3002-y

[31] S. Jin, N. Liu, C. Ma, On schrödingerization based quantum algorithms for linear dynamical systems
with inhomogeneous terms (2024). arXiv:2402.14696.
URL https://arxiv.org/abs/2402.14696

24

https://doi.org/10.22331/q-2025-06-17-1770
https://doi.org/10.22331/q-2025-06-17-1770
https://doi.org/10.22331/q-2025-06-17-1770
https://doi.org/10.22331/q-2025-06-17-1770
https://link.aps.org/doi/10.1103/PhysRevA.102.052411
https://doi.org/10.1103/PhysRevA.102.052411
https://link.aps.org/doi/10.1103/PhysRevA.102.052411
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
http://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://www.sciencedirect.com/science/article/pii/S0021999123008021
https://www.sciencedirect.com/science/article/pii/S0021999123008021
https://doi.org/https://doi.org/10.1016/j.jcp.2023.112707
https://doi.org/https://doi.org/10.1016/j.jcp.2023.112707
https://www.sciencedirect.com/science/article/pii/S0021999123008021
https://arxiv.org/abs/2312.03916
https://arxiv.org/abs/2312.03916
http://arxiv.org/abs/2312.03916
https://arxiv.org/abs/2312.03916
https://doi.org/10.22331/q-2024-06-13-1369
https://doi.org/10.22331/q-2024-06-13-1369
https://doi.org/10.22331/q-2024-06-13-1369
https://doi.org/10.22331/q-2024-06-13-1369
https://doi.org/10.1145/3498331
https://doi.org/10.1145/3498331
https://doi.org/10.1145/3498331
https://doi.org/10.1145/3498331
https://arxiv.org/abs/quant-ph/0410184
http://arxiv.org/abs/quant-ph/0410184
https://arxiv.org/abs/quant-ph/0410184
https://arxiv.org/abs/quant-ph/0008033
http://arxiv.org/abs/quant-ph/0008033
https://arxiv.org/abs/quant-ph/0008033
https://arxiv.org/abs/quant-ph/0205095
http://arxiv.org/abs/quant-ph/0205095
https://arxiv.org/abs/quant-ph/0205095
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1007/s00220-017-3002-y
http://arxiv.org/abs/https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1007/s00220-017-3002-y
https://arxiv.org/abs/2402.14696
https://arxiv.org/abs/2402.14696
http://arxiv.org/abs/2402.14696
https://arxiv.org/abs/2402.14696

	Introduction
	Implementation of products
	Kronecker product
	Matrix-matrix product
	Product of a sequence of matrices

	Hadamard product
	Convolution
	Vectorization

	Applications
	Time-dependent Hamiltonian Simulation
	Block-encoding matrices with Kronecker-sum structure
	Generalized Sylvester equation
	Discretised differential operators
	Adjacent matrix of extended binary tree.

	Conclusion
	Qubit-efficient implementation of Kronecker product

