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Abstract. We analyze the behavior of randomized coordinate gradient descent for non-

convex optimization, proving that under standard assumptions, the iterates almost surely

escape strict saddle points. By formulating the method as a nonlinear random dynamical

system and characterizing neighborhoods of critical points, we establish this result through

the center-stable manifold theorem.

1. Introduction

Randomized coordinate gradient descent is a widely used optimization method in scientific

computing, particularly for large-scale problems. In this paper, we analyze the escape behavior

of randomized coordinate gradient descent from strict saddle points when applied to smooth,

nonconvex optimization problems of the form

(1.1) min
x∈Rd

f(x).

Specifically, we study coordinate gradient descent with a randomized coordinate selection rule

and a fixed step size, as detailed in Algorithm 1.

Algorithm 1 Randomized coordinate gradient descent

Initialization: x0 ∈ Rd, t = 0.

while not convergent do

Sample a coordinate it uniformly random from {1, 2, . . . , d}.
xt+1 ← xt − αeit∂itf(xt).

t← t + 1.

end while

The main contribution of this paper, presented in Theorem 1, establishes that under stan-

dard assumptions—namely, the smoothness of the objective function f , the boundedness of its

Hessian, and the non-degeneracy of its strict saddle points—the set of all pairs (x0, ω) con-

verging to a strict saddle point has measure zero. Here, x0 denotes the initial point, and ω
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represents the sequence of sampled coordinates. Furthermore, under the additional assump-

tion that all critical points are isolated, the algorithm is guaranteed to converge globally to a

critical point without negative Hessian eigenvalues. The proof is based on a random dynamical

systems perspective, following [8], and the application of the center-stable manifold theorem

that rigorously characterizes the local behavior of the algorithm near saddle points.

1.1. Related works. Coordinate gradient descent (CGD) is a widely used optimization tech-

nique, particularly well-suited for modern large-scale problems [33,39]. The method’s popularity

stems from its computational efficiency and scalability, making it applicable across diverse do-

mains [36,37,40]. Notable applications include symmetric eigenvalue problems [3], root-finding

algorithms [35], quantum circuit optimization [10], and high-dimensional statistics, where it is

implemented in packages such as SparseNet [25].

Coordinate gradient descent (CGD) methods fall into two main categories: deterministic

approaches that follow fixed coordinate selection rules, and randomized methods that employ

stochastic sampling. Among deterministic variants, the cyclic strategy updates coordinates

in a fixed periodic order, while the greedy approach (Gauss–Southwell rule) selects at each

iteration the coordinate offering the steepest descent. For strongly convex objectives, cyclic

CGD’s convergence properties are well-established [39], while the greedy variant’s behavior has

been characterized in [27]. These guarantees extend to general convex functions under cyclic

strategies [4, 32]. In nonconvex optimization, significant attention has focused on saddle point

avoidance. Work in [18,19] demonstrates that deterministic first-order methods, including cyclic

CGD, almost surely escape strict saddle points. The Kurdyka– Lojasiewicz (K L) framework [2,5]

further provides convergence guarantees for coordinate methods in nonconvex and nonsmooth

settings. Extensions to variance-reduced or manifold-constrained methods are studied in [7,29].

Randomized coordinate gradient descent (RCGD) employs various sampling strategies, in-

cluding uniform/non-uniform random selection and random-permutation approaches [17, 38].

For convex optimization, [26] establishes sublinear convergence to the minimum in expectation

(E(f(xt))) for general convex functions, with linear convergence under strong convexity. Fur-

ther convex convergence results appear in [22, 23, 39]. The nonconvex case presents distinct

challenges: unlike randomized gradient descent that escapes strict saddle points through ad-

ditive Gaussian noise [11, 14, 15], RCGD’s coordinate-wise stochasticity inherently limits this

capability. While introducing additive perturbations might help, such modifications risk com-

promising the algorithm’s coordinate structure, necessitating alternative analytical approaches.

Relevant nonconvex convergence analyses for RCGD can be found in [8, 21].

A fruitful research direction interprets iterative algorithms as discrete-time dynamical sys-

tems [18, 19, 28]. In deterministic settings, the center-stable manifold theorem [34] provides a

powerful tool for analyzing system behavior near critical points, particularly through the lens of

the invariant manifold theorem. This perspective naturally extends to randomized algorithms

via random dynamical systems theory. Recent work by Liu and Yuan [24] demonstrates this

approach, applying the invariant manifold theorem to prove saddle point avoidance for vari-

ous stochastic methods. Chen et al. [8] developed quantitative finite-block analyses of random

dynamical systems to establish convergence properties near saddle points.
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The theory of random dynamical systems offers powerful analytical tools, including random

stable, unstable, and center manifolds [1, 6, 13, 20, 30, 31]. These constructs capture sample-

dependent geometric structures in the state space and, under generic conditions, typically

exhibit low dimensionality. This characteristic makes them particularly well-suited for analyzing

convergence probabilities to strict saddle points.

The work most closely related to ours is [8], from which our approach differs in two key

aspects. First, we eliminate a technical assumption on the objective function while adopting

a more practical fixed-stepsize scheme. Second, whereas [8] employs linearized finite-block

analysis, our work directly applies invariant manifold theory to establish convergence properties

- an approach that yields both stronger theoretical guarantees and greater robustness in the

analysis.

1.2. Main results. We first set up the notations before stating our main theorem. For each

t ∈ N, denote (Ωt,Σt,Pt) the usual probability space for the distribution U{1,2,...,n}, where

U{1,2,...,n} are the uniform distributions on the set {1, 2, . . . , n}, which is associated to the t-th

iteration of Algorithm 1. Let (Ω,F ,P) be the product probability space of all (Ωt,Σt,Pt), t ∈ N,

and a sample ω ∈ Ω can be represented as a sequence (i0, i1, i2, . . . ), where it ∈ Ωt. It is clear

that the iterates generated by Algorithm 1 is sample-dependent, and we would use the notation

xt = xt(ω) to clarify the dependence if necessary.

Moreover, the dynamics of Algorithm 1 depend on the initialization x0 ∈ Rd and the sample

ω ∈ Ω. We set Θ = Rd × Ω that is equipped with a product measure

µ = Leb× P,

where Leb is the Lebesgue measure on Rd.

The primary objects of interest in our analysis are strict saddle points, and the collection of

all strict saddle points is defined as

Crits(f) :=
{
x ∈ Rd : ∇f(x) = 0, λmin(∇2f(x)) < 0

}
,

where λmin(∇2f(x)) is the smallest eigenvalue of the Hessian matrix ∇2f(x) and we use the

subscript s to emphasize that it is strict.

Our main results are based on some standard and generic assumptions on the objective

function f . The first assumption is that f is two times continuously differentiable with a

bounded and locally Lipschitz continuous Hessian.

Assumption 1. The function f ∈ C2(Rd) and the Hessian ∇2f is uniformly bounded, i.e.,

there exists M > 0 such that
∥∥∇2f(x)

∥∥ ≤ M for all x ∈ Rd. Moreover, for every x∗ ∈
Crits(f), there exists a neighborhood N(x∗) of x∗ where ∇2f is locally Lipschitz continuous,

i.e.,
∥∥∇2f(x)−∇2f(y)

∥∥ ≤ L ∥x− y∥ for all x, y ∈ N(x∗), where L = L(x∗) > 0 is a constant

depending on x∗.

Throughout this paper, ∥ · ∥ always represents the ℓ2-norm for vectors or its induced matrix

norm. Our next assumption is on the non-degeneracy of the strict saddle points.
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Assumption 2. For every x∗ ∈ Crits(f), ∇2f(x∗) is non-degenerate, i.e., x∗ is a non-

degenerate critical point of f in the sense that any eigenvalue of ∇2f(x∗) is nonzero.

The main theorem of this paper states that the set of all (x0, ω) with xt(ω) converging to a

strict saddle point in Crits(f) is of measure zero. In particular, consider

Θ(x∗) =

{
(x0, ω) ∈ Θ : lim

t→+∞
xt(ω) = x∗

}
,

for each x∗ ∈ Crits(f), and

Θ(Crits(f)) =
⋃

x∗∈Crits(f)

Θ(x∗).

Theorem 1. Suppose that Assumptions 1 and 2 hold and that step 0 < α < 1/M . It holds that

µ(Θ(Crits(f))) = 0.

Moreover, with some additional but still standard assumptions, we prove that xt(ω) always

converges to a critical point without negative Hessian eigenvalues, unless (x0, ω) is located in

a µ-null set. More specifically, denote by

Crit(f) := {x ∈ Rd : ∇f(x) = 0},

the set of all critical points of f , and we have the following corollary.

Corollary 2. Suppose that Assumptions 1 and 2 hold and that stepsize α satisfies 0 < α <

1/M . Suppose in addition that every x∗ ∈ Crit(f) is an isolated critical point and that the level

set Lc(f) := {x ∈ Rd : f(x) ≤ c} is bounded for all c ∈ R. Then there exists Θ̂ ⊆ Θ with

µ(Θ \ Θ̂) = 0, such that {xt(ω)}t∈N is convergent with the limit in Crit(f) \ Crits(f) for any

(x0, ω) ∈ Θ̂.

1.3. Organization. The rest of this paper is devoted to the proofs of the results stated above

and is organized as follows. In Section 2, we present some preliminaries on random dynam-

ical systems, which are the foundations of our analysis. Section 3 outlines the proof with a

comparison to [8]. All technical lemmas and propositions are deferred to Section 4.

2. Preliminaries on random dynamical systems

The dynamics of Algorithm 1 can be rigorously characterized using the notion of random

dynamical systems. In particular, given the initilization x0, the trajectory {xt}t∈N is fully

determined by a random sample ω. Therefore, analytical tools developed for random dynamical

systems would be useful for analyzing the behavior of Algorithm 1. This section briefly reviews

some fundamental results in random dynamical systems. For a more detailed introduction, we

refer the readers to [1, 13,20] and references therein.
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2.1. Definition of random dynamical system. Consider a probability space (Ω,F ,P) and

let T denote a semigroup equipped with its Borel σ-algebra B(T), playing the role of time, with

the convention that 0 ∈ T. Here, (Ω,F ,P) represents a general probability space, not necessary

the one associated to Algorithm 1. Common choices for T include N, Z, R≥0, and R. The

random dynamical system is defined as follows.

Definition 2.1 (Metric dynamical system). A metric dynamical system on a probability space

(Ω,F ,P) is a family of maps {θ(t) : Ω→ Ω}t∈T satisfying that

(i) The mapping T× Ω→ Ω, (t, ω) 7→ θ(t)ω is measurable;

(ii) It holds that θ(0) = IdΩ and θ(t + s) = θ(t) ◦ θ(s), ∀ s, t ∈ T;
(iii) θ(t) is P-preserving for any t ∈ T, where we say a map θ : Ω→ Ω is P-preserving if

P(θ−1B) = P(B), ∀ B ∈ F .

Definition 2.2 (Random dynamical system). Let (X,FX) be a measurable space and let {θ(t) :

Ω → Ω}t∈T be a metric dynamical system on (Ω,F ,P). Then a random dynamical system on

(X,FX) over {θ(t)}t∈T is a measurable map

φ : T× Ω×X → X,

(t, ω, x) 7→ φ(t, ω, x),

satisfying the following cocycle property: for any ω ∈ Ω, x ∈ X, and s, t ∈ T, it holds that

φ(0, ω, x) = x,

and that

(2.1) φ(t + s, ω, x) = φ(t, θ(s)ω, φ(s, ω, x)).

The cocycle property (2.1) plays a fundamental role in the theory of random dynamical

systems. Intuitively, it means that if the system evolves for time s and reaches the state

xs = φ(s, ω, x), then continuing the evolution is equivalent to restarting the system from xs

with a shifted random sample θ(s)ω. In other words, the metric dynamical system θ(s) maps

ω to another sample controlling the dynamics starting at time s. The map φ(t, ω, ·) acts on

the space X; for convenience and with a slight abuse of notation, we also denote this map by

φ(t, ω), and write φ(t, ω)x in place of φ(t, ω, x). Under this notation, the cocycle property (2.1)

takes the form:

φ(t + s, ω) = φ(t, θ(s)ω) ◦ φ(s, ω).

In this work, we restrict our attention to the two-sided discrete-time case T = Z, which

corresponds to the dynamics of Algorithm 1 and its inverse system. The inversion is included

due to a technical reason stated later. We only consider the metric dynamical system θ(t) = θt,

with θ : Ω→ Ω being a P-preserving map and θt denotes the t-fold composition of θ. We also

assume that the state space is X = Rd throughout this paper.
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2.2. Multiplicative ergodic theorem. Let A : Ω → GL(d,R) be a measurable map. We

consider a linear random dynamical system defined by

xt = Φ(t, ω)x0,

where the Φ(t, ω) is a product of random matrices

Φ(t, ω) =


A(θt−1ω) · · ·A(θω)A(ω), if t > 0,

I, if t = 0,

A(θtω)−1 · · ·A(θ−2ω)−1A(θ−1ω)−1, if t < 0.

In this setting, the evolution of the system is well characterized by the celebrated multiplicative

ergodic theorem (also known as Oseledets’ theorem), which we state as Theorem 2.3. We use

the notation Φ for this linear system, reserving φ for the nonlinear dynamics.

Theorem 2.3 (Multiplicative ergodic theorem, [1, Theorem 3.4.11]). Suppose that

(2.2) (log ∥A(·)∥)+, (log ∥A(·)−1∥)+ ∈ L1(Ω,F ,P),

where we have used the short-hand a+ := max{a, 0}. Then there exists an θ-invariant Ω̃ ∈ F
with P(Ω̃) = 1, such that the followings hold for any ω ∈ Ω̃:

(i) It holds that the limit

(2.3) Λ(ω) = lim
t→+∞

(
Φ(t, ω)⊤Φ(t, ω)

)1/2t
exists and is a positive definite matrix. Here Φ(t, ω)⊤ denotes the transposition of the

matrix (as Φ(t, ω) is a linear map on X).

(ii) Suppose Λ(ω) has p(ω) distinct eigenvalues, which are ordered as eλ1(ω) > eλ2(ω) >

· · · > eλp(ω)(ω) > 0, and let Vi(ω) be the eigenspace associated with eλi(ω) with dimension

di(ω), for i = 1, 2, . . . , p(ω). Then the functions p(·), λi(·), and di(·), i = 1, 2, . . . , p(·),
are all measurable and θ-invariant on Ω̃.

(iii) There exists a splitting

(2.4) Rd = E1(ω)⊕ E2(ω)⊕ · · · ⊕ Ep(ω)(ω)

of Rd into random subspaces Ei(ω) with dimEi(ω) = di(ω), such that

(2.5) lim
t→±∞

1

t
log ∥Φ(t, ω)x0∥ = λi(ω) ⇐⇒ x0 ∈ Ei(ω) \ {0},

and

A(ω)Ei(ω) = Ei(θω).

(iv) When (Ω,F ,P, θ) is ergodic, i.e., every B ∈ F with θ−1B = B satisfies P(B) = 0 or

P(B) = 1, the functions p(·), λi(·), and di(·), i = 1, 2, . . . , p(·), are constant on Ω̃.

In the rest of Section 2, we slightly abuse the notation by denoting Ω̃ by Ω for simplicity. In

other words, we assume that all statements in Theorem 2.3 are true for every ω, with the null

set Ω \ Ω̃ being removed in advance.

In Theorem 2.3, λi(ω), i = 1, 2, . . . , pi(ω) are the so-called Lyapunov exponents, Ei(ω), i =

1, 2, . . . , pi(ω) are named as the Oseledets subspaces, and the splitting (2.4) is termed Oseledets
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splitting. The limiting behavior of xt(ω) is characterized precisely by (2.5). In particular,

∥xt(ω)∥ grows exponentially as t→ +∞ if x0 has nontrivial projection onto at least one Ei(ω)

with λi(ω) > 0, along the spliting (2.4). Otherwise, ∥xt(ω)∥ either decays exponentially or has

sub-exponential behavior as t→ +∞. This observation motivates the following decomposition:

Rd = Eu(ω)⊕ Ecs(ω),

where

Eu(ω) =
⊕
λi>0

Ei(ω), and Ecs(ω) =
⊕
λi≤0

Ei(ω).

We call Eu(ω) the unstable Oseledets subspace and Ecs(ω) the center-stable Oseledets subspace.

It can be seen that a necessary condition that xt(ω) converges to 0, or even stays bounded, as

t → +∞ is that x0(ω) ∈ Ecs(ω). Though we mainly focus on t → +∞ as it is of particular

interest in the context of Algorithm 1, we remark that similar limit behavior is also true for

t→ −∞ since (2.5) states a two-sided limit.

2.3. Center-stable manifold theorem. For a nonlinear random dynamical system φ(t, ω, x),

we say that x∗ is an equilibrium if

φ(t, ω, x∗) = x∗, ∀ t ∈ Z, ω ∈ Ω.

The behavior of the system near x∗ can be approximated by its linearization at x∗. More

specifically, there is a local manifold, termed the center-stable manifold, that is tangent to the

center-stable Oseledets subspace associated with the linearized system, such that a necessary

condition that xt converges to x∗ is that x0 lies on the center-stable manifold. To state the

theorem rigorously, we write

(2.6) φ(t, ω, x) = Φ(t, ω)x + F (t, ω, x),

where the equilibrium is assumed to be x∗ = 0 without loss of generality and Φ(t, w) is the

linearized system given by Φ(t, w) = Dxφ(t, ω, 0), and make the following assumption.

Definition 2.4 (Tempered random variable). We say that a random variable R : Ω→ (0,∞)

is tempered from above if

lim
t→±∞

1

t

(
logR(θtω)

)
+

= 0

holds almost surely, and a random variable R : Ω→ (0,∞) is called tempered from below if 1/R

is tempered from above. Moreover, a random variable is called tempered if it is both tempered

from above and tempered from below.

Assumption 2.5. We assume that the random dynamical system φ(t, ω, x) in (2.6) with an

equilibrium x∗ = 0 satisfies the following conditions:

(i) φ(t, ω, x) is a C1 random dynamical system, and Φ(t, ω) = Dxφ(t, ω, 0) satisfies the

condition (2.2).
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(ii) There is a ball U(ω) = {x ∈ Rd : ∥x∥ < ρ0(ω)} where ρ0 : Ω→ (0,∞) is tempered from

below such that

sup
x∈U(ω)

∥∥Dk
xF (1, ω, x)

∥∥ ≤ Bk(ω), ∀ 0 ≤ k ≤ 1, ω ∈ Ω,

∥DxF (1, ω, x)∥ ≤ B(ω) ∥x∥ , ∀ x ∈ U(ω), ω ∈ Ω,
(2.7)

where B,Bk : Ω→ (0,+∞) is tempered from above for k = 0, 1.

Remark 2.6. Assumption 2.5 presents a minor modification of the conditions employed in [13,

20] according to their proofs. This assumption aligns with [1, Lemma 7.5.11].

Now we can state the center-stable manifold theorem.

Theorem 2.7 (Center-stable manifold theorem [1,13,20]). Let φ(t, ω, x) be a random dynamical

system as in (2.6) with an equilibrium x∗ = 0 and satisfy Assumption 2.5. Then there exist a

tempered variable ρ : Ω→ (0,+∞) and a measurable function

hcs : Ecs(ω)× Ω→ Eu(ω),

such that the following are satisfied:

(i) hcs(y, ω) is measurable in (y, ω) and is C1 in y with

Liphcs(·, ω) < 1, hcs(0, ω) = 0, and Dyh(0, ω) = 0.

(ii) For any x ∈ Rd and any ω ∈ Ω, if

φ(t, ω, x)→ 0, as t→ +∞,

and

(2.8) ∥φ(t, ω, x)∥ < ρ(θtω), ∀ t ∈ N,

then

x ∈W cs(ω) = {y + hcs(y, ω) : y ∈ Ecs(ω)} .

The center-stable manifold theorem plays a fundamental role in our analysis. There are richer

and stronger results on and related to center-stable manifolds in [13, 20], and in Theorem 2.7,

we only state the results that are necessary in our proofs. In particular, Theorem 2.7 states that

there exists a random manifold W cs(ω), tangent to the center-stable Oseledets subspace Ecs(ω)

and defined as the graph of hcs(ω), with dimW cs(ω) = dimEcs(ω), such that a trajectory

converging to x∗ = 0 must start at a point in W cs(ω), provided that it always stays in a

tempered ball in the sense of (2.8).

3. Proof sketch and discussion

We present the main proof outlines and ideas in this section, with all technical lemmas and

propositions deferred to Section 4. We also make some technical discussion and comparisons

with [8].
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3.1. Setup of the random dynamical system. We rigorously define the random dynamical

system associated with Algorithm 1. In this setup, the system is reversible and has two-sided

discrete time t ∈ Z, which is because we cannot find a standard version of the center-stable

manifold theorem for one-sided time t ∈ N in the existing literature.

• Probability space. For each t ∈ Z, denote (Ωt,Σt,Pt) the usual probability space for the

distribution U{1,2,...,n}, where U{1,2,...,n} are the uniform distributions on the set {1, 2, . . . , n}.
As mentioned in the introduction, Algorithm 1 is naturally equipped with (Ω,F ,P) that is the

product space of (Ωt,Σt,Pt) for t ∈ N. We extended the probability by including the negative

times, i.e., we consider (Ωe,Fe,Pe) that is the product space of (Ωt,Σt,Pt) for t ∈ Z. It is clear

that for every A ∈ F ,

(3.1) P(A) = Pe

 ∏
t∈Z<0

Ωt

×A

 .

It can be seen that every sample in Ωe is a sequence of indices ωe = (· · · , i−2, i−1, i0, i1, i2, · · · )
and we denote πt as the projection map from (Ωe,Fe,Pe) to (Ωt,Σt,Pt) that sends ω to it, for

every t ∈ Z.

• Metric dynamical system. The metric dynamical system on Ωe is θ(t) = θt for t ∈ Z,

where θ : Ωe → Ωe is the shifting operator defined via

πt(θω
e) = πt+1(ωe), ∀ ωe ∈ Ωe, t ∈ Z,

which essentially shifts every element in ωe leftward for one position. It is clear that θ is

measurable and Pe-preserving.

• Random dynamical system. For any ωe ∈ Ωe, we define a (nonlinear) map on Rd via

ϕ(ωe) : Rd → Rd,

x 7→ x− αeie
⊤
i ∇f(x),

where i = π0(ωe) is the index in ωe at the time t = 0. It can be seen that ϕ(ωe) implements one

iteration of Algorithm 1 with the sampled index being i = π0(ωe). Then we define φ(t, ωe) :

Rd → Rd via

φ(t, ωe) =


ϕ(θt−1ωe) ◦ · · · ◦ ϕ(θωe) ◦ ϕ(ωe), if t > 0,

Id, if t = 0,

ϕ(θtωe)−1 ◦ · · · ◦ ϕ(θ−2ωe)−1 ◦ ϕ(θ−1ωe)−1, if t < 0,

which satisfies the cocycle property (2.1). Here, ϕ(ωe) : Rd → Rd is bijective and is hence

invertible if α < 1/M , where M is the constant as in Assumption 1. We will rigorously

characterize the invertibility of ϕ(ωe) in Section 4.1. Thus, φ(t, ωe) defines a random dynamical

system on X = Rd over {θt}t∈Z, and one can see that φ(t, ωe) essentially implements the first

t iterations of Algorithm 1 for t ≥ 0.
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3.2. Restatement of Theorem 1. One can restate Theorem 1 with the extended probability

space (Ωe,Fe,Pe). In particular, denote Θe = Rd×Ωe that is equipped with a product measure

µe = Leb× Pe,

and then define

Θe(x∗) =

{
(x0, ω

e) ∈ Θe : lim
t→+∞

φ(t, ωe, x0) = x∗
}
,

for each x∗ ∈ Crits(f), and

Θe(Crits(f)) =
⋃

x∗∈Crits(f)

Θe(x∗).

One can thus see from (3.1) that Theorem 1 can be equivalently restated as follows.

Theorem 3.1 (Restatement of Theorem 1). Suppose that Assumptions 1 and 2 hold and that

0 < α < 1/M . It holds that

µe(Θe(Crits(f))) = 0.

Theorem 3.1 essentially states that for µe-almost surely (x0, ω
e) will not converge to a strict

saddle point x∗ ∈ Crits(f). To prove Theorem 3.1, one only needs to investigate the measure

of Θe(x∗) for every x∗ ∈ Crits(f), which is stated in the following theorem.

Theorem 3.2. Suppose that Assumptions 1 holds and that 0 < α < 1/M . For any x∗ ∈
Crits(f), if x∗ is a non-degenerate critical point of f , i.e., all eigenvalues of ∇2f(x∗) are

nonzero, then

µe(Θe(x∗)) = 0.

In particular, the proof of Theorem 3.1 is straightforward based on Theorem 3.2.

Proof of Theorem 3.1. It follows from Assumption 2 that every x∗ ∈ Crits(f) is an isolated

critical point of f , which is because that ∇f(x) = ∇2f(x∗)(x− x∗) + o(∥x− x∗∥) ̸= 0 for any

x ̸= x∗ in a small neighborhood of x∗. This implies that Crits(f) is countable. Then according

to Theorem 3.2, we can obtain that

µe(Θe(Crits(f))) =
∑

x∗∈Crits(f)

µe(Θe(x∗)) = 0,

which completes the proof of Theorem 3.1. □

Corollary 2 is also an immediate consequence.

Proof of Corollary 2. Using the same arguments as in [13, Proofs of Proposition 4.11 and

Proposition 4.12], it can be shown that xt(ω) converges to a point in Crit(f) as t → +∞
unless (x0, ω) is in a µ-null set. One can further exclude Θ(Crits(f)), that is also a µ-null set

as in Theorem 1, which guarantees that the limit is in Crit(f) \ Crits(f). □
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3.3. Proof of Theorem 3.2. In this subsection, we present the main proof outline of The-

orem 3.2, with proofs of some technical lemmas and propositions deferred to Section 4. We

consider any x∗ ∈ Crits(f) and assume that x∗ = 0 without loss of generality. The linearization

of φ(t, ωe) at x∗ = 0 is

ΦH(t, ωe) =


AH(θt−1ωe) · · ·AH(θωe)AH(ωe), if t > 0,

I, if t = 0,

AH(θtωe)−1 · · ·AH(θ−2ωe)−1AH(θ−1ωe)−1, if t < 0,

where

AH(ωe) = I − αeie
⊤
i H, H = ∇2f(x∗).

A crucial step in the proof of Theorem 3.2 is to apply the center-stable manifold theorem,

i.e., Theorem 2.7, for which one needs to validate Assumption 2.5. We include the detailed

validation with Assumption 1 and α < 1/M in Section 4.2. Moreover, we need the following

two propositions.

Proposition 3.3. Let H = ∇f(x∗) have a negative eigenvalue and 0 < α < 1/max1≤i≤d |Hii|,
then the largest Lyapunov exponent of ΦH(t, ωe) is positive.

Proposition 3.4. Suppose that Assumption 1 holds and that 0 < α < 1/M . For any x∗ ∈
Crits(f), if x∗ is a non-degenerate critical point of f , i.e., all eigenvalues of ∇2f(x∗) are

nonzero, then there exists Θ̃ ⊆ Θ = Rd × Ω with µ(Θ \ Θ̃) = 0, such that for any (x0, ω) ∈ Θ̃,

if xt(ω)→ x∗ as t→ +∞, then xt(ω)→ x∗ exponentially as t→ +∞.

Throughout this paper, we say that a sequences yt in Rd or R converges exponentially to y∗

as t→ +∞ if

lim sup
t→+∞

1

t
log ∥yt − y∗∥ < 0.

Note that our notion of exponential convergence is essentially at least exponential convergence,

which includes convergence rates faster than exponential rates. The proof of Proposition 3.3

follows exactly the same line as in the proof of [8, Proposition 3.1] and is hence omitted.

The proof of Proposition 3.4 is presented in Section 4.3. Proposition 3.4 states that almost

every convergent trajectory has an exponential convergence rate, which eventually makes the

condition (2.8) true and hence guarantees that we can identify convergent trajectories with

points on the center-stable manifold. In addition, Proposition 3.3 shows that the center-stable

manifold is of dimension at most d− 1 due to the presence of the positive Lyapunov exponent,

and is hence of Lebesgue measure zero. These observations lead to Theorem 3.2. We then

present the proof of Theorem 3.2 based on Assumption 2.5, Proposition 3.3, and Proposition 3.4.

Proof of Theorem 3.2. Let Ω̃e ⊂ Ωe be θ-invariant with Pe(Ω̃e) = 1, so that all statements in

Theorem 2.3 and Theorem 2.7 are true for every ωe ∈ Ω̃e, and let ρ : Ωe → (0,+∞) be the

tempered random variable as in Theorem 2.7 satisfying

lim
t→±∞

1

t
log ρ(θtωe) = 0, ∀ ωe ∈ Ω̃e.
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Moreover, it follows from the Kolmogorov’s zero-one law that (Ωe,Fe,Pe, θ) is ergodic, which

implies that p(ωe), λi(ω
e), di(ω

e) are all constant over ωe ∈ Ω̃e. We thus drop the dependence

on ωe and denote these constants by p, λi, di for simplicity. Denote Ecs(ωe) and W cs(ωe) as the

center-stable Oseledets subspace and the center-stable manifold, respectively. It follows from

Proposition 3.3 that

(3.2) dimW cs(ωe) = dimEcs(ωe) = d−
∑
λi>0

di ≤ d− 1, ∀ ωe ∈ Ω̃e,

Define

Θ̃e =

 ∏
t∈Z<0

Ωt

× Θ̃ ⊆ Θe = Rd × Ωe,

where Θ̃ ⊆ Θ is from Proposition 3.4. Consider any

(x0, ω
e) ∈ Θe(x∗) ∩ Θ̃e ∩

(
Rd × Ω̃e

)
.

It follows from Proposition 3.4 that

φ(t, ωe, x0)→ x∗ = 0, t→ +∞,

exponentially, i.e.,

lim sup
t→+∞

1

t
log ∥φ(t, ωe, x0)∥ < 0.

Therefore, there exists T (x0, ω
e) ∈ N such that

1

t
log ∥φ(t, ωe, x0)∥ < 1

t
log ρ(θtωe), ∀ t ≥ T (x0, ω

e),

and equivalently that,

∥φ(t, ωe, x0)∥ < ρ(θtωe), ∀ t ≥ T (x0, ω
e).

We then have that

φ
(
t, θT (x0,ω

e)ωe, φ (T (x0, ω
e), ωe, x0)

)
→ x∗ = 0, t→ +∞,

and ∥∥∥φ(t, θT (x0,ω
e)ωe, φ (T (x0, ω

e), ωe, x0)
)∥∥∥ < ρ

(
θtθT (x0,ω

e)ωe
)
, ∀ t ∈ N.

Using Theorem 2.7, we can conclude that

φ (T (x0, ω
e), ωe, x0) ∈W cs

(
θT (x0,ω

e)ωe
)
,

which implies that

x0 ∈ φ(T (x0, ω
e), ωe)−1

(
W cs

(
θT (x0,ω

e)ωe
))
⊆
⋃
t∈N

φ(t, ωe)−1
(
W cs(θtωe)

)
,

where the Lebesgue measure of the set on the right-hand side can be computed from (3.2) as

Leb

(⋃
t∈N

φ(t, ωe)−1
(
W cs(θtωe)

))
≤
∑
t∈N

Leb
(
φ(t, ωe)−1

(
W cs(θtωe)

))
= 0,



RCGD ALMOST SURELY ESCAPES STRICT SADDLE POINTS 13

since the image of a manifold of dimension at most d−1 under a C1 map is of Lebesgue measure

zero. Therefore, by Fubini’s theorem, one obtains that

µe
(

Θe(x∗) ∩ Θ̃e ∩
(
Rd × Ω̃e

))
≤
∫
Ωe

Leb

(⋃
t∈N

φ(t, ωe)−1
(
W cs(θtωe)

))
Pe(dωe) = 0,

and hence that

µe (Θe(x∗)) ≤ µe
(

Θe(x∗) ∩ Θ̃e ∩
(
Rd × Ω̃e

))
+ µe

(
Θe \ Θ̃e

)
+ µe

(
Θe \ (Rd × Ω̃e)

)
= 0,

where we used µ(Θ \ Θ̃) = 0 and Pe(Ωe \ Ω̃e) = 0. The proof is completed. □

3.4. Comparison and discussion. As the conclusion of this section, we make a technical

comparison with [8], whose main theorem is of similar style to ours, i.e., for any x0 that is not

a strict saddle point, xt almost surely does not converge to a strict saddle point as t → +∞.

The main difference is that the following assumption is required in [8].

Assumption 3.5 ( [8, Assumption 3]). For every x∗ ∈ Crits(f), it holds that PH
+ (ω)ei ̸= 0, for

every i ∈ {1, 2, . . . , d} and almost every ω ∈ Ω, where PH
+ (ω) is the orthogonal projection onto

WH
+ (ω) =

⊕
λi(ω)>0 V

H
i (ω) and V H

i (ω) is the eigenspace corresponding to the eigenvalue λi(ω)

of ΛH(ω) as in (2.3), i = 1, 2, . . . , p(ω), for the linearized system at x∗ with H = ∇2f(x∗).

We remark that [8] only considers sample ω corresponding to one-sided time T = N, without

extending to ωe and two-sided time T = Z. Therefore, there is no explicit notion of center-

stable and unstable Oseledets subspaces, but the limiting matrix ΛH(ω) and its eigenspaces

V H
i (ω), i = 1, 2, . . . , p(ω) are still well-defined, as they are defined one-sidedly for t → +∞

in (2.3). In our notation, one can verify that WH
+ (ωe) =

⊕
λi>0 V

H
i (ωe) is the orthogonal

complement of the center-stable Oseledets subspace in Rd.

The main proof in [8] is that, with Assumption 3.5 and additional randomness in step-

sizes, the iterate would have a non-negligible component in WH
+ (ω) with high probability,

which will be amplified sufficiently and hence drive the dynamics to leave the neighborhood of

x∗ ∈ Crits(f), avoiding the convergence to x∗. However, there are two main drawbacks of this

analytical framework. Firstly, additional randomness is a bit artificial, making the random-

ized coordinate gradient descent not in its simplest format. In fact, the sample ω in [8] is a

sequence of not only the random coordinates, but also the random stepsizes. Secondly, though

the techinical Assumption 3.5 can be verified generically, it excludes some practical Hessian

matrices, such as H = ∇2f(x∗) = diag(H1, H2) where all eigenvalues of H1 are positive and all

eigenvalues of H2 are negative, which is already acknowledged in [8].

Overall, our present work overcomes some technical obstacles in [8], and establishes a neater

and more general analytical framework for the convergence of randomized coordinate gradient

descent. This general framework could be potentially applied or extended for other randomized

algorithms.

4. Technical lemmas and propositions

We collect all technical lemmas and propositions in this section.
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4.1. Invertibility of ϕ(ωe). Recall that ϕ(ωe) : x 7→ x−αeie
⊤
i ∇f(x), where i = π0(ωe) is the

index in ωe at the time t = 0, and we assume that f ∈ C2(Rd) and
∥∥∇2f(x)

∥∥ ≤M, ∀ x ∈ Rd,

as in Assumption 1. The Jacobian matrix of ϕ(ωe) at x is

J(x) = I − αeie
⊤
i ∇2f(x),

which is always invertible by the Sherman-Morison formula if α < 1/M . Therefore, according

to the inverse function theorem, at any x ∈ Rd, ϕ(ωe) is locally invertible and the inverse is

also C1. Moreover, α < 1/M yields that

lim
∥x∥→+∞

∥ϕ(ωe)(x)∥ = +∞,

which implies that ϕ(ωe) is proper, i.e., the preimage of a compact set is still compact. One can

thus apply the Hadamard’s global inverse function theorem [12,16] and conclude that ϕ(ωe) is

globally invertible.

4.2. Validation of Assumption 2.5. Suppose that Assumption 1 is satisfied and that α <

1/M . Then φ(t, ωe) is a C1 random dynamical system since ϕ(ωe) ∈ C1(Rd). Using the

same argument as in [8], it can be verified that AH(ωe) and AH(ωe)−1 are uniformly bounded

in ωe ∈ Ωe and hence that the linearized system ΦH(t, ωe) satisfies the conditions of the

multiplicative ergodic theorem (Theorem 2.3). Therefore, the first condition in Assumption 2.5

is satisfied.

For the second condition in Assumption 2.5, the residual of the linearization at x∗ = 0 and

t = 1 can be computed as

F (1, ωe, x) = φ(1, ωe, x)− ΦH(1, ωe) = ϕ(ωe)−AH(ωe)

=
(
x− αeie

⊤
i ∇f(x)

)
−
(
x− αeie

⊤
i Hx

)
= αeie

⊤
i (Hx−∇f(x)),

where i = π0(ωe). Note that x 7→ Hx−∇f(x) is a C1 map since f ∈ C2(Rd). As in assumption 1,

there exists a neighborhood N(x∗) of x∗ = 0 and constants B0, B1, L so that

sup
x∈N(x∗)

∥∥Dk
xF (1, ωe, x)

∥∥ ≤ Bk, ∀ 0 ≤ k ≤ 1, ωe ∈ Ωe,

∥DxF (1, ωe, x)∥ ≤ αL ∥x∥ , ∀ x ∈ N(x∗), ωe ∈ Ωe.

This verifies (2.7) as constants are tempered random variables.

4.3. Proof of Proposition 3.4. This subsection proves Proposition 3.4, which only uses the

original probability space (Ω,F ,P) that is the product space of (Ωt,Σt,Pt) for all t ∈ N, not

the extended one (Ωe,Fe,Pe). We will use the filtration {Ft}t∈N where Ft is the sigma algebra

generated by
{∏t

s=0 Bs ×
∏+∞

s=t+1 Ωs : Bs ∈ Σs, s = 0, 1, . . . , t
}

.

Recall that Proposition 3.4 states that for any strict saddle point x∗ ∈ Crits(f) with non-

degenerate Hessian ∇f(x∗), there exists Θ̃ ⊂ Θ = Rd × Ω with µ(Θ \ Θ̃) = 0, such that for

any (x0, ω) ∈ Θ̃, xt(ω) → x∗ as t → +∞ implies that xt(ω) → x∗ exponentially. The proof

is divided into two parts. Firstly, we construct Θ1 ⊂ Θ with µ(Θ \ Θ1) = 0, so that for any

(x0, ω) ∈ Θ1, xt(ω)→ x∗ implies that f(xt(ω))→ f(x∗) exponentially. Secondly, we construct

Θ2 ⊂ Θ with µ(Θ \Θ2) = 0 and define Θ̃ = Θ1 ∩Θ2. It can be shown that for any (x0, ω) ∈ Θ̃,
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the exponential convergence of f(xt(ω)) to f(x∗) implies that xt(ω)→ x∗ exponentially. These

two parts are elaborated in Section 4.3.1 and Section 4.3.2, respectively. In the rest of this

subsection, we always assume that x∗ = 0 and f(x∗) = 0 without loss of generality.

4.3.1. Exponential convergence of f(xt(ω)). For any (x0, ω) ∈ Θ, where ω = (i0, i1, i2, . . . ), and

any t ∈ N, we define

(4.1) It(x0, ω) =

1, if |e⊤it∇f(xt)| ≥ 1√
d
∥∇f(xt)∥ ,

0, otherwise,

where xt = xt(ω) is generated by Algorithm 1 given (x0, ω). We further define

(4.2) Θ1 =

{
(x0, ω) ∈ Θ : lim inf

t→+∞

∑t−1
s=0 Is(x0, ω)

t
≥ 1

d

}
.

Lemma 4.1. It holds that µ(Θ \Θ1) = 0.

Proof. Define

Jt(x0, ω) =

1, if it = min
{
i : |e⊤i ∇f(xt)| ≥ 1√

d
∥∇f(xt)∥

}
,

0, otherwise.

It is clear that It(x0, ω) ≥ Jt(x0, ω) and that

(4.3) P
(
Jt(x0, ω) = 1

∣∣ Ft−1

)
=

1

d
.

which is because that
∣∣e⊤it∇f(xt)

∣∣ ≥ 1√
d
∥∇f(xt)∥ is true if the it-th entry of ∇f(xt) has the

largest absolute value among all entries of ∇f(xt), and that it is sampled uniformly randomly

from {1, 2, . . . , d}. Consider

J̃t(x0, ω) = Jt(x0, ω)− 1

d
,

and we can have that

E
(
J̃t(x0, ω)

∣∣ Ft−1

)
= 0,

which indicates that
{∑t

s=0 J̃s(x0, ω)
}
t∈N is a martingale with respect to {Ft}t∈N. According

to the strong law of large numbers for martingales [9], for any x0 ∈ Rd, we have for P-almost

every ω that

lim
t→+∞

∑t−1
s=0 J̃s(x0, ω)

t
= 0,

which implies that

lim inf
t→+∞

∑t−1
s=0 Is(x0, ω)

t
≥ lim

t→+∞

∑t−1
s=0 Js(x0, ω)

t
= lim

t→+∞

∑t−1
s=0 J̃s(x0, ω)

t
+

1

d
=

1

d
,

For any x0 ∈ Rd, we set

Ω1(x0) =

{
ω ∈ Ω : lim inf

t→+∞

∑t−1
s=0 Is(x0, ω)

t
≥ 1

d

}
,

which satisfies

P(Ω1(x0)) = 1.
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One can thus conclude by applying the Fubini’s theorem that

µ(Θ \Θ1) =

∫
Rd

∫
Ω

1Θ\Θ1
(x0, ω)P(dω)Leb(dx0) =

∫
Rd

P(Ω \ Ω1(x0))Leb(dx0) = 0,

where 1Θ\Θ1
(x0, ω) is the indicator function, i.e., 1Θ\Θ1

(x0, ω) = 1 if (x0, ω) ∈ Θ \ Θ1 and

1Θ\Θ1
(x0, ω) = 0 otherwise. The proof is hence completed. □

Lemma 4.2. Suppose that Assumption 1 holds and that 0 < α < 1/M . Let x∗ = 0 ∈ Crits(f)

be a strict saddle point of f with non-degenerate Hessian ∇2f(x∗) and let f(x∗) = 0. For

(x0, ω) ∈ Θ1, if xt(ω)→ 0 as t→ +∞, then f(xt(ω))→ 0 exponentially as t→ +∞.

Proof. Consider any (x0, ω) ∈ Θ1 with xt = xt(ω)→ 0. With Assumption 1 and 0 < α < 1/M ,

f(xt) is monotonically decreasing in t, which can be derived by Taylor’s expansion at xt,

f(xt+1) = f
(
xt − αeite

⊤
it∇f(xt)

)
= f(xt)− α

(
e⊤it∇f(xt)

)2
+

1

2
α2
(
e⊤it∇f(xt)

)2 · e⊤it∇2f
(
xt − θtαeite

⊤
it∇f(xt)

)
eit

≤ f(xt)−
1

2
α
(
e⊤it∇f(xt)

)2 ≤ f(xt),

(4.4)

where θt ∈ (0, 1). The monotonicity implies that

f(xt) ≥ f(0) = 0, ∀ t ∈ N.

Note that ∇2f(0) is non-degenerate. There exist a neighborhood U1 of 0 and a constant

σ > 0 such that

(4.5) ∥∇f(x)∥ ≥ σ ∥x∥ , ∀ x ∈ U1.

Since xt → 0, we have xt ∈ U1, ∀ t ≥ T for some T ∈ N. Therefore, for any t ≥ T , if

It(x0, ω) = 1, we have from (4.1), (4.4), and (4.5) that

(4.6) f(xt+1) ≤ f(xt)−
α

2d
∥∇f(xt)∥2 ≤ f(xt)−

ασ2

2d
∥xt∥2 ≤

(
1− ασ2

Md

)
f(xt),

where the last inequality follows from the Tayler expansion at 0, namely

f(xt) = f(0) +∇f(0)⊤xt +
1

2
x⊤
t ∇2f(θ′txt)xt =

1

2
x⊤
t ∇2f(θ′txt)xt ≤

M

2
∥xt∥2 ,

with θ′t ∈ (0, 1). Applying (4.6) and the monotonicity of f(xt) repeatedly, one obtains that

f(xt) ≤
(

1− ασ2

Md

)∑t−1
s=T Is(x0,ω)

f(xT ), ∀ t ≥ T.

Therefore, one can immediately conclude the exponential convergence rate of f(xt) → 0 as

the construction of Θ1, say (4.2), suggests that

lim inf
t→+∞

∑t−1
s=T Is(x0, ω)

t
= lim inf

t→+∞

∑t−1
s=0 Is(x0, ω)

t
≥ 1

d
,

which completes the proof. □
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4.3.2. Exponential convergence of xt(ω). We work with the same settings as in Lemma 4.2, and

let U1, σ from (4.5). Let ρ = ρ(α, d, σ,M) ∈ (0, 1) be another constant satisfying

(4.7) ρM +
Mρ2

2
<

ασ2

2d
(1− ρ)2.

Define

U2 = U2(ρ) =
⋃

x∈f−1(0)

B(x, ρ ∥x∥),

where B(x, r) is the open ball in Rd centered at x with radius being r, and

S = U1 ∩ U2 ∩ f−1([0,+∞)).

Then we further define that

(4.8) Θ2 =
{

(x0, ω) ∈ Θ : xt(ω) ∈ S finitely often
}
.

Lemma 4.3. Suppose that Assumption 1 holds and that 0 < α < 1/M . Let x∗ = 0 ∈ Crits(f)

be a strict saddle point of f with non-degenerate Hessian ∇2f(x∗) and let f(x∗) = 0. It holds

that µ(Θ \Θ2) = 0.

Proof. Fix x0 ∈ Rd. For any k ∈ N+, define a random variable τk(x0) via

τk(x0) = τk(x0, ω) =

t, if xt(ω) ∈ S and #{0 ≤ t′ < t : xt′(ω) ∈ S} = k − 1,

+∞, if #{t′ ∈ N : xt′(ω) ∈ S} < k,

i.e., τk is the stopping time that xt visits S for exactly k times. By the definition of Θ2, i.e.,

(4.8), it is clear that (x0, ω) ∈ Θ \Θ2 if any only if τk(x0, ω) < +∞, ∀ k ∈ N.

Suppose that xt ∈ S. Since xt ∈ U2, there exists x′
t with f(x′

t) = 0 and xt ∈ B(x′
t, ρ ∥x′

t∥).
It is clear that x′

t ̸= 0 since otherwise B(x′
t, ρ ∥x′

t∥) = ∅, and that ∥xt∥ ≥ (1 − ρ) ∥x′
t∥. Using

Taylor’s expansion at x′
t and Assumption 1, we have

f(xt) ≤ ∥∇f(x′
t)(xt − x′

t)∥+
M

2
∥xt − x′

t∥
2

≤M ∥x′
t∥ ∥xt − x′

t∥+
M

2
∥xt − x′

t∥
2 ≤

(
ρM +

Mρ2

2

)
∥x′

t∥
2
,

which combined with (4.6) yields that, with probability at least 1
d conditioned on xt, it holds

that

f(xt+1) ≤ f(xt)−
ασ2

2d
∥xt∥2 ≤

(
ρM +

Mρ2

2

)
∥x′

t∥
2 − ασ2

2d
(1− ρ)2 ∥x′

t∥
2
< 0,

where we used (4.7). This proves that as long as xt ∈ S,

P
(
f(xt+1) < 0 | xt

)
≥ 1

d
,

which implies that

P
(
f(xt+1) ≥ 0 | τk(x0) = t

)
≤ 1− 1

d
.
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Note that f(xt+1) < 0 implies that xt′ /∈ S for any t′ ≥ t + 1 due to the monotonically

decreasing property (4.4). For any k ≥ 1, one can estimate that

P
(
τk+1(x0) < +∞ | τk(x0) < +∞

)
=
∑
t∈N

P
(
τk(x0) = t, τk+1(x0) < +∞ | τk(x0) < +∞

)
≤
∑
t∈N

P
(
τk(x0) = t, f(xt+1) ≥ 0 | τk(x0) < +∞

)
=
∑
t∈N

P
(
τk(x0) = t | τk(x0) < +∞

)
· P
(
f(xt+1) ≥ 0 | τk(x0) = t

)
≤
(

1− 1

d

)∑
t∈N

P
(
τk(x0) = t | τk(x0) < +∞

)
= 1− 1

d
.

Therefore,

P
(
xt ∈ S, i.o. | x0

)
≤ P

(
τk(x0) < +∞

)
≤ P

(
τ1(x0) < +∞

) k−1∏
k′=1

P
(
τk′+1(x0) < +∞ | τk′(x0) < +∞

)
≤
(

1− 1

d

)k−1

, ∀ k ≥ 1,

which implies that

P
(
xt ∈ S, i.o. | x0

)
= 0, ∀ x0 ∈ Rd.

One can then conclude µ(Θ \Θ2) = 0 by integrating against x0 ∈ Rd. □

We need the following lemma characterizing some local geometric properties near x∗.

Lemma 4.4. Suppose that Assumption 1 holds and that 0 < α < 1/M . Let x∗ = 0 ∈ Crits(f)

be a strict saddle point of f with non-degenerate Hessian ∇2f(x∗) and let f(x∗) = 0. There

exists a constant p > 0 and a neighborhood U of x∗, such that

(4.9) f(x) ≥ p ∥x∥2 , ∀ x ∈
(
U ∩ f−1([0,+∞))

)
\ S.

With Lemma 4.4, one can directly conclude the exponential convergence of xt(ω) to x∗ from

the exponential convergence of f(xt(ω)) to f(x∗), assuming xt(ω)→ x∗ and xt(ω) ∈ S finitely

often. This leads to the proof of Proposition 3.4.

Proof of proposition 3.4. Assume x∗ = 0 and f(x∗) = 0 without loss of generality and define

Θ̃ = Θ1 ∩ Θ2. It follows from Lemma 4.1 and Lemma 4.3 that µ(Θ \ Θ̃) = 0. For any

(x0, ω) ∈ Θ̃ with xt(ω) → 0, we have from Lemma 4.2 that f(xt(ω)) → 0 exponentially.

The definition of Θ2 in (4.8) and the monotonically decreasing property (4.4) guarantee that

xt(ω) ∈ (U ∩ f−1([0,+∞))) \ S for large enough t. Then one can conclude the exponential

convergence of xt(ω) to 0 by applying (4.9). □
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We prove Lemma 4.4 in the rest of this subsection, where we denote H = ∇2f(0) ∈ Rd×d

that is symmetric with all eigenvalues being nonzero, and set

(4.10) fH(x) =
1

2
x⊤Hx.

Lemma 4.5. Let H ∈ Rd×d be symmetric and consider the quadratic function fH as in (4.10).

For any ρH > 0, define

UH
2 = UH

2 (ρH) =
⋃

x∈(fH)−1(0)

B(x, ρH ∥x∥).

There exist constants pH+ > 0 and pH− < 0 so that the followings hold for any x ∈ Rd \ UH
2 :

(i) If fH(x) ≥ 0, then fH(x) ≥ pH+ ∥x∥
2
.

(ii) If fH(x) ≤ 0, then fH(x) ≤ pH− ∥x∥
2
.

Proof. We only prove (i) since (ii) is a direct corollary of (i) for 1
2x

⊤(−H)x, and we assume

that (fH)−1([0,+∞)) \ UH
2 is not empty since otherwise the result is trivial. It can be seen

that (fH)−1(0), Rd\UH
2 , and (fH)−1([0,+∞)) are all closed under scalar multiplication, which

implies for any c, c′ > 0,

c

c′
·
((
∂B(0, c′) ∩ (fH)−1([0,+∞))

)
\ UH

2

)
=
(
∂B(0, c) ∩ (fH)−1([0,+∞))

)
\ UH

2 ,

where ∂B(0, c′) and ∂B(0, c) are the boundaries of B(0, c′) and B(0, c), respectively. This

homogeneity property leads to that

(4.11) inf
x∈(∂B(0,c′)∩(fH)−1([0,+∞)))\UH

2

fH(x)

∥x∥2
= inf

x∈(∂B(0,c)∩(fH)−1([0,+∞)))\UH
2

fH(x)

∥x∥2
.

Notice that ∂B(0, c) and (fH)−1([0,+∞)) are both closed and that UH
2 is open. Therefore,(

∂B(0, c) ∩ (fH)−1([0,+∞))
)
\UH

2 is closed, on which fH(x)/ ∥x∥2 is always positive. One can

thus conclude that

(4.12) pH+ := inf
x∈(∂B(0,c)∩(fH)−1([0,+∞)))\UH

2

fH(x)

∥x∥2
= min

x∈(∂B(0,c)∩(fH)−1([0,+∞)))\UH
2

fH(x)

∥x∥2
> 0.

Combining (4.11) and (4.12), we know that

fH(x) ≥ pH+ ∥x∥
2
, ∀ x ∈ (fH)−1([0,+∞)) \ UH

2 ,

which proves (i). □

Lemma 4.6. Let x∗ = 0 ∈ Crits(f) be a strict saddle point of f with non-degenerate Hessian

H = ∇2f(x∗) and let f(x∗) = 0. If H has at least one positive eigenvalue and ρH < ρ/4 < 1/4,

then there exists a neighborhood U ′ of 0, such that UH
2 (ρH) ∩ U ′ ⊆ U2(ρ) ∩ U ′.

Proof. Without loss of generality, we assume that H = diag(h1, . . . , hd′ , hd′+1, . . . , hd), where

h1 ≥ · · · ≥ hd′ > 0 > hd′+1 ≥ · · · ≥ hd, since otherwise one can change the coordinates via an

orthogonal transformation. Define

(4.13) c =
1

2
min{hd′ ,−hd′+1} ·

(
2ρH + (ρH)2

)
> 0,
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and let c′ > 0 depend on c and f near 0 so that

(4.14)
∣∣f(x)− fH(x)

∣∣ < c

4
∥x∥2 , ∀ x ∈ B(0, 3c′).

Set U ′ = B(0, c′). Consider any x ∈ UH
2 (ρH) ∩ U ′, and it suffices to show that x ∈ U2(ρ).

There exists x′ ∈ (fH)−1(0) \ {0} so that x ∈ B(x′, ρH ∥x′∥) by the definition of UH
2 (ρH). One

also has x′ ∈ B(0, 2c′) since ρH < 1/2 and x ∈ B(0, c′). Define

x′
+ = x′ + ρHP+x

′, x′
− = x′ + ρHP−x

′,

where P+ = diag(1, . . . , 1, 0, . . . , 0) ∈ Rd×d has d′ nonzero diagonal entries and P− = I − P+.

Note that

0 = fH(x′) = fH(P+x
′) + fH(P−x

′),

which implies that

fH(P+x
′) = −fH(P−x

′) =
1

2
fH(P+x

′)− 1

2
fH(P−x

′) ≥ hd′

2
∥P+x

′∥2 − hd′+1

2
∥P−x

′∥2

≥ 1

2
min{hd′ ,−hd′+1} ∥x′∥2 .

One can hence obtain that

fH(x′
+) = (1 + ρH)2fH(P+x

′) + fH(P−x
′) =

(
2ρH + (ρH)2

)
fH(P+x

′) ≥ c ∥x′∥2 ,

with c being the constant in (4.13), and similarly that

fH(x′
−) = fH(P+x

′) + (1 + ρH)2fH(P−x
′) =

(
2ρH + (ρH)2

)
fH(P−x

′) ≤ −c ∥x′∥2 .

Notice also x′
+, x

′
− ∈ B(x′, ρH ∥x′∥) ⊆ B(0, 3c′). It holds that

fH(x′
+) ≥ c

4

∥∥x′
+

∥∥2 , fH(x′
−) ≤ − c

4

∥∥x′
−
∥∥2 .

which combined with (4.14) yields that

f(x′
+) > 0 > f(x′

−).

Therefore, there exists x′′ ∈ B(x′, ρH ∥x′∥) so that

f(x′′) = 0.

We also have that

∥x− x′′∥ ≤ ∥x− x′∥+ ∥x′ − x′′∥ < 2ρH ∥x′∥ < 4ρH ∥x′′∥ < ρ ∥x′′∥ ,

which leads to that

x ∈ B(x′′, ρ ∥x′′∥) ⊆ U2(ρ).

The proof is thus completed. □

Proof of Lemma 4.4. Let ρH ∈ (0, ρ/4) and denote UH
2 = UH

2 (ρH). By Lemma 4.6, there exists

a neighborhood U ′ of 0, such that UH
2 ∩U ′ ⊆ U2∩U ′. Then by Lemma 4.5, there exist constants

pH+ > 0 and pH− < 0 so that for x ∈ U ′ \ U2 ⊆ U ′ \ UH
2 , one has either fH(x) ≥ pH+ ∥x∥

2
or

fH(x) ≤ pH− ∥x∥
2
. Let U ⊆ U1 ∩ U ′ be a neighborhood of 0 so that∣∣f(x)− fH(x)

∣∣ < p ∥x∥2 , ∀ x ∈ U,
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where p = 1
2 min{pH+ ,−pH−}. Therefore, we have for any x ∈ U \ U2 that, either f(x) ≥ p ∥x∥2

or f(x) ≤ −p ∥x∥2.

Consider any x ∈
(
U ∩ f−1([0,+∞))

)
\ S. Note that S = U1 ∩ U2 ∩ f−1([0,+∞)) and that

U ⊆ U1. We have x ∈ U \ U2 and f(x) ≥ 0, which excludes f(x) ≤ −p ∥x∥2 and leads to

f(x) ≥ p ∥x∥2. □
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