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ON THE CONTINUITY OF SCHUR-HORN MAPPING

HENGZHUN CHEN∗ AND YINGZHOU LI†

Abstract. The Schur-Horn theorem is a well-known result that characterizes the relationship
between the diagonal elements and eigenvalues of a symmetric (Hermitian) matrix. In this paper,
we extend this theorem by exploring the eigenvalue perturbation of a symmetric (Hermitian) matrix
with fixed diagonals, which is referred to as the continuity of the Schur-Horn mapping. We intro-
duce a concept called strong Schur-Horn continuity, characterized by minimal constraints on the
perturbation. We demonstrate that several categories of matrices exhibit strong Schur-Horn conti-
nuity. Leveraging this notion, along with a majorization constraint on the perturbation, we prove
the Schur-Horn continuity for general symmetric (Hermitian) matrices. The Schur-Horn continuity
finds applications in oblique manifold optimization related to quantum computing.

Key words. Schur-Horn, oblique manifold, mapping continuity, qOMM.

1. Introduction. Schur-Horn theorem was established in the mid-20th century.
It continues to find applications and inspire advancements in various fields of mathe-
matics and physics. Specifically, the characterization of eigenvalues and matrix diago-
nal entries continues to stimulate further research, driving advancements in quantum
information theory, quantum optics, quantum metrology, spectral graph theory, con-
vex optimization, and majorization theory. In this paper, we study the continuity of
Schur-Horn mapping, which is adopted for our energy landscape analysis of objective
functions in quantum computing [4].

Schur-Horn theorem is composed of two parts, as proved by Schur and Horn. We
start by defining the condition known as the majorization.

Definition 1.1 (Majorization). Given vector x ∈ Rn, notation x↑ denotes the
reordered vector of x with entries in non-decreasing order. Let a and λ be two vectors
in Rn. Vector λ is majorized by a, denoted as λ ≺ a, if

(1.1)

k∑

i=1

λ↑i ≤
k∑

i=1

a↑i , k = 1, · · · , n− 1; and

n∑

i=1

λ↑i =

n∑

i=1

a↑i .

The majorization relation in (1.1) is equivalent to another commonly used definition
in the literature, i.e., a vector a is majorized by λ, if

k∑

i=1

a↓i ≤
k∑

i=1

λ↓i , k = 1, · · · , n− 1; and

n∑

i=1

a↓i =

n∑

i=1

λ↓i ,

where notation x↓ denotes the reordered vector of x with entries in non-increasing
order. Then Schur-Horn theorem states:

• (Schur [19]) Let H be a Hermitian matrix with eigenvalues λ = (λi)1≤i≤n
and diagonal entries a = (aii)1≤i≤n, then λ ≺ a;

• (Horn [11]) If a, λ ∈ Rn satisfy λ ≺ a, then there exists a symmetric (Hermi-
tian) matrix H whose diagonal entries are a and eigenvalues are λ.

Schur-Horn theorem has been applied in various fields. In the realm of quan-
tum optics and quantum state engineering, the Schur-Horn theorem has been applied
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to design and manipulate desired quantum states [16, 20]. As for convex optimiza-
tion, Schur-Horn theorem has implications in convex relaxations for graph and inverse
eigenvalue problems [2]. The theorem provides constraints on the eigenvalues of pos-
itive semidefinite matrices, enabling the formulation of optimization problems with
eigenvalue constraints and facilitating the development of efficient algorithms for solv-
ing such problems.

There has been a rich history in proving the Schur-Horn theorem, specifically the
Horn part. In general, proofs could be grouped into nonconstructive ones [5, 11, 12]
and constructive ones [3, 23]. Chu [5] utilized an optimization-based limiting process
to prove the existence of the matrix in the Horn part. Leite et al. [12] gave an algebraic
proof, which could be extended to analogous results for skew-symmetric matrices as
well. Constructive proofs [3, 23] were based on Givens rotation and could be viewed as
an algorithm for constructingH in Horn part given a and λ satisfying the majorization
condition. Generalizations of constructive algorithms can be found in [6, 7]. Recently,
Matthew Fickus et al. [8] proposed an algorithm based on the finite frame theory to
procedure every example of the matrix in the Horn part.

1.1. Contribution. Schur-Horn theorem establishes the connections among di-
agonal entries, eigenvalues, and a symmetric matrix. In the following, we first define a
Schur-Horn mapping based on the Schur-Horn theorem and then prove the continuity
of the mapping.

Given a target diagonal vector d ∈ Rn, we define two sets of matrices 1

Sd =
{
Λ ∈ R

n×n : Λ diagonal , diag(Λ) ≺ d
}

and

Md =
{
A ∈ R

n×n : diag(A) = d,A = A⊤
}
.

One can define an equivalence relation between two matrices A1 and A2 over Md as

(1.2) A1 ∼ A2 if A1, A2 have the same eigenvalues.

Then, we can define a mapping between Sd and the quotient space of Md with the
equivalence relation (1.2), whose existence is guaranteed by the Schur-Horn theorem,

F : Sd →Md/ ∼
Λ 7→ [QΛQ⊤], Q is an orthogonal matrix such that diag(QΛQ⊤) = d.

(1.3)

The mapping F is called the Schur-Horn mapping. Furthermore, we introduce the
Hausdorff distance with the Frobenius norm ‖·‖F, i.e.,

(1.4) dH([A1], [A2]) := max

{
sup

X∈[A1]

inf
Y ∈[A2]

‖X − Y ‖F , sup
Y ∈[A2]

inf
X∈[A1]

‖X − Y ‖F

}
.

This Hausdorff distance measures the distance between two elements in Md/ ∼. We
also remark that actually the sup and inf in (1.4) can be replaced by max and min
respectively since [A1] and [A2] are both compact sets in Md and f(Y ) = ‖X − Y ‖F

1For the sake of notation, we adopt diag(·) similar to the MATLAB “diag” function, i.e., diag(v)
is a square diagonal matrix with the entries of vector v on the diagonal and diag(A) is a column
vector of the diagonal entries of A.
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and g(X) = minY ∈[A2] ‖X − Y ‖F are continuous functions. Indeed, Hausdorff dis-
tance is a metric over the set of compact subsets [21]. With the Hausdorff distance
being a properly defined metric in Md/ ∼, we can claim the continuity of the Schur-
Horn mapping F (·), i.e., if Λ1,Λ2 ∈ Sd are sufficiently close, then F (Λ1), F (Λ2) can
be close enough under the Hausdorff distance. Rigorously, we will first establish a
perturbative analysis for F (·) in Theorem 1.3 and then state the continuity of the
Schur-Horn mapping in Corollary 1.4, which are the main contributions of this paper.

For ease of expression and reference later, we introduce the definition of Schur-
Horn continuity as follows.

Definition 1.2 (Schur-Horn Continuity). Suppose A is an n-by-n real symmet-
ric (complex Hermitian) matrix with eigenvalues λ ∈ Rn and diagonal entries d ∈ Rn.
Let λ̃ be a perturbation of λ such that ‖λ − λ̃‖2 = O(ε) for ε > 0 sufficiently small

and λ̃ ≺ d. Then, there exists a real symmetric (complex Hermitian) matrix B̃ with

eigenvalues λ̃ and diagonal entries d such that
∥∥∥A− B̃

∥∥∥
F
= O(ε1/2).

Theorem 1.3. Any symmetric matrix A ∈ Rn×n is Schur-Horn continuous.

From Theorem 1.3, one could easily deduce the continuity of the Schur-Horn
mapping as the following corollary.

Corollary 1.4. Schur-Horn mapping F is a continuous mapping from Sd to
Md/ ∼ with Hausdorff distance dH .

Proof. Given Λ1,Λ2 ∈ Sd such that ‖Λ1 − Λ2‖F = O(ε), denote [A1] = F (Λ1),
[A2] = F (Λ2). According to Theorem 1.3 we have minY ∈[A2] ‖X − Y ‖F = O(ε1/2).
Note that g(X) = minY ∈[A2] ‖X − Y ‖F is a continuous function and [A1] is a compact
set, it yields that

max
X∈[A1]

min
Y ∈[A2]

‖X − Y ‖F = O(ε1/2).

Similarly, we have

max
Y ∈[A2]

min
X∈[A1]

‖X − Y ‖F = O(ε1/2).

Thus, from the definition of Hausdorff distance (1.4) we obtain the continuity of
Schur-Horn mapping.

For some applications where matrices are Hermitian, we can still define the Schur-
Horn mapping and prove its continuity. Consider

Nd =
{
A ∈ C

n×n : diag(A) = d,A = A∗
}
,

we can define Schur-Horn mapping for Hermitian scenario as

F : Sd → Nd/ ∼
Λ 7→ [QΛQ∗], Q is a unitary matrix such that diag(QΛQ∗) = d.

(1.5)

Here, we abuse the notation F to denote the Schur-Horn mapping for Hermitian
matrices. Then we have similar results as follows.

Theorem 1.5. Any Hermitian matrix A ∈ Cn×n is Schur-Horn continuous.

Corollary 1.6. Schur-Horn mapping F is a continuous mapping from Sd to
Nd/ ∼ with Hausdorff distance dH .
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1.2. Applications. The continuity property of the Schur-Horn mapping is use-
ful in analyzing the manifold optimization problems. For example, consider the land-
scape analysis of an objective function over the oblique manifold. The descent direc-
tion of such a problem has to incorporate the manifold information, and the pertur-
bative analysis of a stationary point on the manifold directly links to the continuity
of the Schur-Horn mapping. We provide a concrete application of the continuity of
the Schur-Horn mapping.

Given a negative definite Hermitian matrix A ∈ Cn×n, we consider the following
manifold optimization problem,

(1.6) min
X∈OB(n,p)

E0(X) = tr ((2I −X∗X)X∗AX) ,

where the oblique manifold is defined as,

(1.7) OB(n, p) =
{
X ∈ C

n×p
∣∣diag(X∗X) = 1

}
,

where 1 denotes an all-one vector of length p. The minimization problem (1.6) with-
out the oblique manifold constraint has been known as the unconstrained orbital
minimization method (OMM) [17, 18] in the literature, which is used to seek the
low-lying eigenpairs of A. In [1], the OMM objective function is adopted in a varia-
tional quantum eigensolver (VQE) on quantum computers, known as quantum orbital
minimization method (qOMM). The manifold optimization problem (1.6) is the op-
timization problem of qOMM, where the oblique manifold constraint appears due to
the unitary quantum state constraint from the quantum computer.

Without the oblique manifold constraint, OMM has an attractive property: all
minima are formed by the eigenvectors of A corresponding to the low-lying eigenvalues,
and it has no spurious local minima [15]. With the oblique manifold constraint, we
would like to have the same property. In the study of the first-order stationary points
of (1.6), we would like to show that some of them are strict saddle points, and a
local perturbation leads to decay in the objective function. However, the oblique
manifold constraint requires that the perturbed points have to stay in the manifold,
i.e., diag(X∗X) = 1. The continuity of the Schur-Horn mapping assures that for
any local perturbation on eigenvalues of X∗X there is a corresponding point in the
neighborhood of X∗X on the manifold. Then, the objective function at a saddle point
decays for a particular perturbation, and hence, the same property of OMM holds for
qOMM.

Recently, other objective functions [9, 10, 13, 14, 22] have been applied in VQE
on quantum computers and lead to the following constraint optimization problems,

min
X∈OB(n,p)

1

2
tr(X∗AX) +

µ

4
‖X∗X − I‖2F and min

X∈OB(n,p)

1

2
‖XX∗ −A‖2F .

In their landscape analysis, the continuity of the Schur-Horn mapping can be applied
to similar scenarios of saddle point analysis. Similar property as that of OMM could
be proved.

1.3. Organization. The rest of the paper is organized as follows. In section 2,
we first establish the Schur-Horn continuity for real diagonal matrices. Then, in
section 3, we introduce the concept of strong Schur-Horn continuity and demonstrate
its application to specific matrix types, which plays a crucial role in proving our
main theorem. In section 4, we combine the previous results to prove the Schur-Horn
continuity for symmetric matrices. The Schur-Horn continuity for Hermitian matrices
is covered in section 5. Finally, we conclude the paper in section 6.
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2. Schur-Horn Continuity of Diagonal Matrices. We first prove the Schur-
Horn continuity of diagonal matrices, as in Theorem 2.2. The proof explicitly shows
that the majorization condition plays an essential role in the Schur-Horn continuity.

Before proving Theorem 2.2, we first prove Lemma 2.1, which is the generalized
version of Schur-Horn continuity for matrices of size 2× 2. Lemma 2.1 will be repeat-
edly used throughout this paper. In the following, standard big O and big Θ notations
are used with ε being the asymptotic variable approaching zero. Other variables, in-
cluding matrix dimensions and matrix nonzero entries, are viewed as constants.

Lemma 2.1. Given ε > 0 sufficiently small and d1, d2 ∈ R. Let B be a symmetric
matrix of form,

B =

[
b11 b12
b21 b22

]
=

[
d1 − f(ε) b12

b12 d2 + g(ε)

]
,

with f(ε) = Θ(εα), g(ε) = Θ(εβ) for α, β > 0. Further, we assume that

b212 + f(ε)(d2 − d1 + g(ε)) ≥ 0.

Then there exists a Givens rotation G with rotation angle θ = Θ(εγ) such that the

(1, 1) entry of B̃ = GBG⊤ is d1 and
∥∥∥B̃ −B

∥∥∥
F
= O(εδ), where various scenarios of

γ and δ are provided in Table 1.

Various Scenarios γ δ

b12 6= 0 α α

b12 = 0 d1 6= d2 α/2 α/2

b12 = 0 d1 = d2 α > β (α− β)/2 (α + β)/2

b12 = 0 d1 = d2 α ≤ β 0 α

Table 1

Various scenarios of b12, d1, d2, γ, and δ for Lemma 2.1.

Proof. Denote the Givens rotation matrix as G =

[
c s
−s c

]
, where c = cos θ and

s = sin θ. Then we have

(2.1) B̃ = GBG⊤ =

[
c2b11 + s2b22 + 2csb12 (c2 − s2)b12 + cs(b22 − b11)

(c2 − s2)b12 + cs(b22 − b11) c2b22 + s2b11 − 2csb12

]
.

Equating the (1, 1) entry of B̃ and d1, we obtain,

(2.2) c2b11 + s2b22 + 2csb12 = d1.

Denoting t = s
c = tan θ, we reformulate (2.2) into

(2.3) (b22 − d1)t
2 + 2b12t+ b11 − d1 = 0.

Equation (2.3) has real solutions if and only if

(2.4) ∆ = 4(b212 − (b22 − d1)(b11 − d1)) = 4(b212 + f(ε)(d2 − d1 + g(ε))) ≥ 0.
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According to the assumption in the lemma, we know that (2.3) always has at least
one solution, thus G exists. Furthermore, by solving the quadratic equation, one has

(2.5) t =
f(ε)

b12 ±
√
b212 + f(ε)(d2 − d1 + g(ε))

.

Now, we divide the discussion into various scenarios, as in Table 1.
Case 1: b12 6= 0.
In this case, ∆ is positive when ε is sufficiently small. The quadratic equation (2.3)

then has two solutions in (2.5), and one of them is of order f(ε)
2b12

. Hence, one solution
gives tan θ = Θ(εα), thus θ = Θ(εα). By the triangular inequality of matrix norm,
we obtain,

∥∥∥B̃ − B
∥∥∥
F
≤

∥∥GBG⊤ −GB
∥∥
F
+ ‖GB −B‖F

≤ ‖GB‖F ·
∥∥G⊤ − I

∥∥
F
+ ‖G− I‖F · ‖B‖F = O(εα).

Case 2: b12 = 0 and d2 6= d1.
When b12 = 0, we have

B̃ −B =

[
f(ε) cs(d2 − d1 + g(ε) + f(ε))

cs(d2 − d1 + g(ε) + f(ε)) −f(ε)

]
.

At this time, the solutions (2.5) of the quadratic equation (2.3) admit,

t = ±
√

f(ε)

d2 − d1 + g(ε)
= Θ(εα/2),

where the positivity of the quantity under the square root is guaranteed by (2.4).

Thus, we can derive θ = Θ(εα/2) and
∥∥∥B̃ −B

∥∥∥
F
= O(εα/2).

Case 3 and Case 4: b12 = 0 and d2 = d1.
Denoting d = d1 = d2, the solutions (2.5) of the quadratic equation (2.3) admit,

t = ±
√
f(ε)

g(ε)
= Θ(ε(α−β)/2),

where the positivity of the quantity under the square root is also guaranteed by (2.4).
Additionally, we have

(2.6) B̃ −B =

[
f(ε) cs(g(ε) + f(ε))

cs(g(ε) + f(ε)) −f(ε)

]
,

where |s| ≤ 1 and |c| ≤ 1.
When α > β and ε sufficiently small, we have θ = Θ(ε(α−β)/2). However, consider

entries comparison of B̃ and B as (2.6), one can deduce that

cs(g(ε) + f(ε)) = Θ(ε(α−β)/2+β) = Θ(ε(α+β)/2),

with f(ε) = Θ(εα). Note that α > β implies α+β
2 < α, thus we have

∥∥∥B̃ −B
∥∥∥
F
=

O(ε(α+β)/2).
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When α ≤ β, we have θ = Θ(1). Comparing entries of B̃ and B as (2.6), we could

see that the norm of B̃ − B is bounded by the lower order of f(ε) and g(ε), and we

have
∥∥∥B̃ −B

∥∥∥
F
= O(εα).

Theorem 2.2. Any diagonal matrix A ∈ Rn×n is Schur-Horn continuous.

Proof. Without loss of generality, we assume that the diagonal entries of A are
non-decreasing, i.e., d1 ≤ d2 ≤ · · · ≤ dn. The perturbed matrix is denoted as Ã(0).
The perturbed eigenvalues are denoted as λ̃i = di+hi(ε). When the eigenvalues have
a gap, i.e., λi < λi+1, the perturbed eigenvalues keep the ordering, i.e., λ̃i ≤ λ̃i+1

for sufficiently small ε. When eigenvalues are identical, λi = λi+1, the perturbed
eigenvalues are ordered based on their perturbations. Then we have the majorization
relations given ε > 0 sufficiently small

λ̃1 ≤ d1,

λ̃1 + λ̃2 ≤ d1 + d2,

...

λ̃1 + · · ·+ λ̃n−1 ≤ d1 + · · ·+ dn−1,

λ̃1 + · · ·+ λ̃n−1 + λ̃n = d1 + · · ·+ dn−1 + dn.

Hence we have

h1(ε) + h2(ε) + · · ·+ hi(ε) ≤ 0, i = 1, · · · , n− 1, and

h1(ε) + · · ·+ hn(ε) = 0.

Next, we describe a procedure to correct the diagonal entries from perturbed λ̃i to di.
We maintain a priority queue with diagonal indices as elements. For any diagonal

index i in the queue, we ensure that di + h̃i(ε) has a negative perturbation h̃i(ε) < 0,
where h̃i(ε) denotes the updated perturbation throughout the procedure. Starting
from the first diagonal entry, we check and enqueue the index i = 1, 2, . . . in order
if h̃i(ε) < 0 and skip the index i if h̃i(ε) = 0. We keep on checking and enqueuing
indices until the first index j such that h̃j(ε) > 0. If j does not exist, then by the
last equation in majorization relation, we know that the queue is also empty and the
diagonal entries of the perturbed A have all been corrected. Otherwise, we obtain a
j and the updated perturbations satisfy,

(2.7) h̃1(ε) + · · ·+ h̃j(ε) = h1(ε) + · · ·+ hj(ε) ≤ 0.

This condition is satisfied in the first correction step and we will verify it after each
step. By the j-th majorization relation, the queue is guaranteed to be non-empty.
We pop an index from the queue and denote it as i. The current working matrix is
denoted as Ã(i−1).2

Based on the property of i and j, the inequality assumption in Lemma 2.1 is always
satisfied. Hence, the lemma provides a Givens rotation applying to the i-th and j-
th columns and rows to correct the (i, i) diagonal entry. Without loss of generality,
applying the extended Givens rotation matrix symmetrically to the current matrix

2If the index i is skipped, we assign Ã(i) = Ã(i−1).
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Ã(i−1) we obtain Ã(i), whose top-left j-by-j submatrix admits,




I
c s

I
−s c







ÃI1I1
p⊤iI1

Ã⊤
I2I1

p⊤jI1

piI1
di + h̃i(ε) p⊤I2i

0

ÃI2I1
pI2i ÃI2I2

p⊤jI2

pjI1
0 pjI2

dj + h̃j(ε)







I
c −s

I
s c




=




ÃI1I1
cp⊤iI1

+ sp⊤jI1
Ã⊤

I2I1
cp⊤jI1

− sp⊤iI1

cpiI1
+ spjI1

di cp⊤I2i
+ spjI2

pij

ÃI2I1
cpI2i + sp⊤jI2

ÃI2I2
cp⊤jI2

− spI2i

cpjI1
− spiI1

pji cpjI2
− sp⊤I2i

dj + h̃i(ε) + h̃j(ε)



,

(2.8)

where I1 = {1, . . . , i− 1}, I2 = {i+1, . . . , j − 1}, vectors piI1
, pI2i, pjI1

and pjI2
are

all perturbations introduced in previous steps, submatrices ÃI1I1
, ÃI2I1

, and ÃI2I2

are untouched submatrices of Ã(i−1),3 and

pij = pji = cs(dj − di + h̃j(ε)− h̃i(ε)).

The Givens rotation above corrects the (i, i) diagonal entry and it only changes the

top-left j-by-j submatrix of Ã(i−1), leaving the remain part of Ã(i−1) unchanged.
Since ‖λ− λ̃‖2 = O(ε), from the correction procedure we have

(2.9) h̃i(ε) = O(ε) = Θ(εα), h̃j(ε) = O(ε) = Θ(εβ),

with α ≥ 1 and β ≥ 1.
We now have three cases: i) h̃i(ε) + h̃j(ε) < 0; ii) h̃i(ε) + h̃j(ε) = 0; and iii)

h̃i(ε)+ h̃j(ε) > 0. In case i), we enqueue j and start checking the following indices. In
case ii), we skip j and start checking the indices after j. In case iii), we pop another
index from the queue and repeat the correction procedure. In all cases, the updated
perturbation at index i and j are 0 and h̃i(ε) + h̃j(ε), respectively. Hence (2.7) holds
for all indices greater or equal to j. Then, the majorization relations guarantee that
the procedure ends if and only if all diagonal entries have been corrected.

Finally, we show that the corrected matrix is within an ε1/2 neighborhood of
the original matrix. In the above procedure, each step corrects at least one diagonal
index, and the procedure finishes in at most n steps for n being the matrix size. Now,
we show that all the off-diagonals of Ã(i−1) are O(ε1/2) for i = 1, . . . , n, by induction.

It is obvious that all the off-diagonals of Ã(0) = diag(λ̃) are zeros and hence O(ε1/2),

which gives the start point of induction. For those h̃i(ε) = 0, Ã(i) = Ã(i−1), hence we
only need to consider the case when h̃i(ε) 6= 0. Note that vectors piI1

, pI2i, pjI1
and

pjI2
in (2.8) are O(ε1/2) by our induction assumption, it implies that the off-diagonals

of Ã(i) are O(ε1/2) except pij and pji. Denote

B =

[
di + h̃i(ε) 0

0 dj + h̃j(ε)

]
, B̃ =

[
di pij
pji dj + h̃j(ε) + h̃i(ε)

]
,

we split the discussion according to the scenarios with b12 = 0 in Lemma 2.1 and (2.9)
as follow:

3We dropped the superscript (i− 1) for simplicity.
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(i) di 6= dj ,
∥∥∥B − B̃

∥∥∥
F
= O(εα/2) = O(ε1/2);

(ii) di = dj and α > β,
∥∥∥B − B̃

∥∥∥
F
= O(ε(α+β)/2) = O(ε1/2);

(iii) di = dj and α ≤ β,
∥∥∥B − B̃

∥∥∥
F
= O(εα) = O(ε1/2).

Therefore, we conclude that all the off-diagonals of Ã(i) are O(ε1/2). Furthermore,

note that the diagonals of Ã(i) and Ã(i−1) only differ at indices i and j, together

with
∥∥∥B − B̃

∥∥∥
F
= O(ε1/2), it implies that

∥∥∥Ã(i) − Ã(i−1)
∥∥∥
F
= O(ε1/2). By triangular

inequality of Frobenius norm, the distance between the corrected matrix and the
original matrix is bounded as,

∥∥∥A− Ã(n)
∥∥∥
F
≤

∥∥∥A− Ã(0)
∥∥∥
F
+

n∑

k=1

∥∥∥Ã(k−1) − Ã(k)
∥∥∥
F
= O(ε1/2).

Thus, A is Schur-Horn continuous.

Remark 2.3. Theorem 2.2 is covered by our main Theorem 1.5. And the proof of
Theorem 2.2 has the same structure as that of Theorem 1.5, where more complicated
scenarios are discussed in the later one. We present the diagonal matrix case as a
stand-alone theorem to facilitate the understanding of the main theorem proof. The
diagonal matrix perturbation is also used to prove the strong Schur-Horn continuity.

3. Strong Schur-Horn Continuity. In this section, we define the strong Schur-
Horn continuity. The strong Schur-Horn continuity is a stronger version of the Schur-
Horn continuity, which plays a key role in the proof of Schur-Horn continuity of
general symmetric matrices. And we will prove that if a matrix is strongly Schur-
Horn continuous then it is Schur-Horn continuous, but not the other way around.
Before delving into the proofs, it is essential to define the spectrum window and
strong Schur-Horn continuity.

Definition 3.1 (Spectrum Window). Let A be a symmetric matrix. The spec-
trum window of A is defined as the closed interval of the minimum and maximum
eigenvalues of A, i.e., 4

ω(A) := [λmin(A), λmax(A)].

Definition 3.2 (Strong Schur-Horn Continuity). Suppose A ∈ Rn×n is a sym-
metric matrix with an eigendecomposition A = QΛQ⊤, where Q is the orthonormal
eigenvector matrix and Λ is the diagonal eigenvalue matrix. Matrix A is strongly
Schur-Horn continuous if, for any perturbed eigenvalues Λ̃ satisfying tr(Λ̃) = tr(Λ)

and
∥∥∥Λ̃− Λ

∥∥∥
F
= O(ε) for ε > 0 sufficiently small, there exists a symmetric matrix

B̃ = G2QG1Λ̃G
⊤
1 Q

⊤G⊤
2 such that

1. diag(B̃) = diag(A),
2. G1 and G2 are orthogonal matrices, and
3. ‖Gi − I‖F = O(ε1/2) for i = 1, 2.

With relaxed requirements, it is straightforward to conclude that the strong Schur-
Horn continuity directly implies the Schur-Horn continuity.

4We use λmin(·) and λmax(·) to denote the minimum and maximum eigenvalues of a matrix,
respectively.
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Corollary 3.3. If a matrix is strongly Schur-Horn continuous, then it is Schur-
Horn continuous.

Remark 3.4. There exists a counterexample matrix A being Schur-Horn continu-
ous but not strongly Schur-Horn continuous. Consider the matrix A and its perturbed
eigenvalue matrix Λ̃,

A =

[
1 0
0 2

]
and Λ̃ =

[
1 + ε 0
0 2− ε

]
,

where ε > 0 is sufficiently small, and the perturbation satisfies the last majorization
relation. By Theorem 2.2, the diagonal matrix A is Schur-Horn continuous. How-
ever, for the given perturbation above, the first majorization relation is violated. By
Schur theorem, there does not exist a matrix B̃ whose eigenvalue matrix is Λ̃ and
diagonal entries being 1 and 2. Hence, we conclude that A is not strongly Schur-Horn
continuous.

Comparing Definition 3.2 and Definition 1.2, there are two differences. First, the
requirement of the perturbation is relaxed in Definition 3.2. In Definition 1.2, the per-
turbation needs to satisfy all majorization relations as in (1.1). While, Definition 3.2
only requires the perturbation to satisfy the last majorization relation. This difference
is essential between the Schur-Horn continuity and the strong Schur-Horn continuity.
Furthermore, we have Proposition 3.5 describing the relation of eigenvalues and diag-
onal entries of a strongly Schur-Horn continuous matrix, which directly extends the
result of the Schur part in the Schur-Horn theorem. The proof of Proposition 3.5 can
be found in Appendix A.

Proposition 3.5. Suppose matrix A ∈ Rn×n is strongly Schur-Horn continuous
with eigenvalues λ ∈ R

n and diagonal entries d ∈ R
n. Without loss of generality, both

λ and d are in non-decreasing order, then either A is a scalar matrix, i.e.,

λ1 = · · · = λn = d1 = · · · = dn;

or the first n− 1 majorization inequalities of A are strict, i.e.,

λ1 < d1,

λ1 + λ2 < d1 + d2,

...

λ1 + · · ·+ λn−1 < d1 + · · ·+ dn−1,

λ1 + · · ·+ λn−1 + λn = d1 + · · ·+ dn−1 + dn.

(3.1)

The second difference is the transformation of Λ̃, i.e., the eigenvector matrix of
B̃. In Definition 1.2, no restriction is applied to the eigenvector matrix of B̃, whereas
in Definition 3.2, the eigenvector matrix is required to be an ε perturbation of the
original eigenvector matrix of A. The second difference is not essential. The explicit
expression G2QG1 simplifies our later proofs.

Next, we provide a few lemmas that prove specific types of matrices A are strongly
Schur-Horn continuous. These lemmas contribute to the final proof of our main
theorem.

Lemma 3.6. Any irreducible symmetric matrix A ∈ Rn×n is strongly Schur-Horn
continuous.
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Proof. Denote the eigendecomposition of A as A = QΛQ⊤, where Q is the eigen-
vectors of A and Λ is the diagonal eigenvalue matrix. The diagonal entries of A is

denoted as d ∈ R
n. From

∥∥∥Λ̃− Λ
∥∥∥
F

= O(ε), we construct the perturbed matrix

B = QΛ̃Q⊤ with ‖B −A‖F = O(ε). When ε is sufficiently small, we know that the
nonzero entries in A remain nonzero in B and are Θ(1) with respect to ε. Our proof

starts from B and constructs the desired B̃ step by step based on Lemma 2.1. In the
end, the eigenvalues of B̃ are Λ̃ and the diagonal entries of B̃ are the same as that of
A.

The underlying undirected graph of A is a connected graph since A is symmetric
and irreducible, where the graph is built according to the non-zero pattern of A.
We construct a spanning tree T covering all vertices in the graph. Starting from a
leaf vertex vi in T , assume the parent vertex of vi is vj . Taking the 2 × 2 principal
submatrix of B at the intersections of the i-th and j-th columns and rows, we obtain
a symmetric matrix as in Lemma 2.1,

B(ij) =

[
Bii Bij
Bji Bjj

]
,

where Bii is always in the (1, 1) entry of B(ij). The off-diagonal entries of B(ij)

are nonzero and Θ(1) with respect to ε. By the first scenario in Lemma 2.1, there
exists a Givens rotation matrix G(ij) such that the (1, 1) entry of G(ij)B(ij)(G(ij))⊤

is the target diagonal value di. Also, G(ij) is close to an identity matrix when ε is
sufficiently small, i.e.,

∥∥G(ij) − I
∥∥
F

= Θ(εα1) with α1 ≥ 1. Embed G(ij) into an
n × n Givens rotation matrix G1 with entries at the intersections of the i-th and
j-th columns and rows. The (i, i) entry of G1BG

⊤
1 is again di. Importantly, when

ε is sufficiently small, this operation only changes (i, i) and (j, j) entries along the
diagonal of B and preserves the connectivity in the graph and, hence, the spanning
tree. 5 After this step, the i-th diagonal entry has been “corrected” and all later
operations will not touch it anymore. Hence, we can see that the vertex vi has been
eliminated from the graph and tree. Then, we repeat this process with the updated
tree and the matrix G1BG

⊤
1 . Such a process could be repeated n − 1 times and

results G1, . . . , Gn−1 Givens rotation matrices. Note that the perturbation order of
the diagonals is always O(ε) during the procedure, we have ‖Gi − I‖F = Θ(εαi) with
αi ≥ 1 for i = 1, . . . , n− 1. Finally, we obtain a symmetric matrix,

B̃ = Gn−1 · · ·G1BG
⊤
1 · · ·G⊤

n−1,

whose n − 1 diagonal entries are “corrected” during the process and all the pertur-
bations are collected at the last diagonal entry, which is automatically corrected due
to the last majorization relation. Eigenvalues of B̃ remain the same as B during the
similarity transformations. The difference between B̃ and A could be bounded as,

∥∥∥B̃ −A
∥∥∥
F
≤

∥∥∥B̃ −B
∥∥∥
F
+ ‖B −A‖F = O(ε).

Thus, A is strongly Schur-Horn continuous.

Lemma 3.7. Given A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 be two strongly Schur-Horn
continuous matrices such that their spectrum windows have a nonzero measured in-

5New edges could be added to the graph. However, the spanning tree is still a spanning tree in
the updated graph.
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tersection, i.e.,

µ(ω(A1) ∩ ω(A2)) > 0,

where µ(·) is the Lebesgue measure over R, then matrix A =

[
A1

A2

]
is also strongly

Schur-Horn continuous.

Proof. Denote the eigendecomposition of Ai as Ai = QiΛiQ
⊤
i for i = 1, 2, where

Qi is the eigenvector matrix and Λi is the diagonal eigenvalue matrix, respectively.

Given a perturbation of eigenvalues of A, denoted as Λ̃ =

[
Λ̃1

Λ̃2

]
with tr(Λ̃1) =

tr(Λ1) + h(ε) and tr(Λ̃2) = tr(Λ2) − h(ε). Since
∥∥∥Λ− Λ̃

∥∥∥
F
= O(ε), if h(ε) 6= 0, we

must have h(ε) = O(ε) = Θ(εα) with α ≥ 1.
Without loss of generality, we assume that λmin(A1) ≤ λmin(A2). By the as-

sumption µ(ω(A1)∩ω(A2)) > 0, spectrum windows of A1 and A2 admit either of the
following cases,

λmin(A1) ≤ λmin(A2) < λmax(A1) ≤ λmax(A2),

or

λmin(A1) ≤ λmin(A2) < λmax(A2) ≤ λmax(A1).

In both cases, we have

λmin(A1) < λmax(A2) and λmin(A2) < λmax(A1),

and hence,

(3.2) λmin(Λ̃1) < λmax(Λ̃2) and λmin(Λ̃2) < λmax(Λ̃1),

when ε is sufficiently small. Next, we split the discussion based on the sign of h(ε).

If h(ε) > 0, by Lemma 2.1, one can apply a Givens rotation between λmax(Λ̃1)

and λmin(Λ̃2) to compensate −h(ε),
[
λmax(Λ̃1) 0

0 λmin(Λ̃2)

]
→

[
λmax(Λ̃1)− h(ε) ∗

∗ λmin(Λ̃2) + h(ε)

]
,

which is the second scenario in Table 1. The rotation is a perturbation of an identity
whose rotation angle θ = Θ(εα/2) = O(ε1/2) since α ≥ 1. We embed the 2-by-2
rotation matrix into a rotation matrix G0 of the same size as A, which is also a
perturbation of an identity and ‖G0 − I‖F = O(ε1/2).

If h(ε) < 0, by Lemma 2.1, one can apply a Givens rotation between λmin(Λ̃1)

and λmax(Λ̃2) to compensate −h(ε),
[
λmin(Λ̃1) 0

0 λmax(Λ̃2)

]
→

[
λmin(Λ̃1)− h(ε) ∗

∗ λmax(Λ̃2) + h(ε)

]
,

which is the second scenario in Table 1. The rotation is a perturbation of an identity
whose rotation angle θ = Θ(εα/2) = O(ε1/2) since α ≥ 1. We embed the 2-by-2
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rotation matrix into a rotation matrix G0 of the same size as A, which is also a
perturbation of an identity and ‖G0 − I‖F = O(ε1/2).

If h(ε) = 0, we simply set G0 = I and hence ‖G0 − I‖F = O(ε1/2).

After the diagonal compensation, we denote the block form of G0Λ̃G
⊤
0 as,

G0Λ̃G
⊤
0 =

[
Λ′
1 E12

E21 Λ′
2

]
.

For diagonal blocks, Λ′
1 and Λ′

2 are diagonal matrices being O(ε) perturbation of
Λ1 and Λ2 respectively, satisfying tr(Λ′

1) = tr(Λ1) = tr(A1) and tr(Λ′
2) = tr(Λ2) =

tr(A2). Off-diagonal blocks E12 and E21 are O(ε1/2) perturbations of zero matrices.
Since A1 and A2 are strongly Schur-Horn continuous, there exists

B1 = G12Q1G11Λ
′
1G

⊤
11Q

⊤
1 G

⊤
12 and B2 = G22Q2G21Λ

′
2G

⊤
21Q

⊤
2 G

⊤
22

such that diag(Bi) = diag(Ai) and Gijs being O(ε1/2) perturbation of identity ma-
trices with ‖Gij − I‖F = O(ε1/2) for i, j = 1, 2. Introducing

G1 =

[
G11

G21

]
G0, Q =

[
Q1

Q2

]
, G2 =

[
G12

G22

]
,

we obtain

B̃ = G2QG1Λ̃G
⊤
1 Q

⊤G⊤
2 ,

which has eigenvalues being Λ̃ and diagonal entries being the same as that of A. Since
all Gijs and G0 are orthogonal matrices close to identity matrices in order O(ε1/2)
under the Frobenius norm, G1 and G2 are also orthogonal matrices being O(ε1/2)
perturbations of identity matrices, i.e., ‖Gi − I‖F = O(ε1/2) for i = 1, 2. Hence, we
conclude that A is strongly Schur-Horn continuous.

Lemma 3.8. Let A1 ∈ Rn×n be a strongly Schur-Horn continuous matrix with
spectrum window such that µ(ω(A1)) > 0, then for any d2 ∈ ω(A1)

◦, matrix A =[
A1

d2

]
is strongly Schur-Horn continuous.

The proof of Lemma 3.8 is similar to that of Lemma 3.7. Note that from d2 ∈
ω(A1)

◦ we have λmin(A1) < d2 < λmax(A1), which is the analogy of (3.2) in the proof
of Lemma 3.7. Once we obtain these inequalities, the rest of the proofs are identical.
Hence, we omit the detail for simplicity.

Lemma 3.9. Let A ∈ Rn×n be a symmetric matrix. There exists a permutation
matrix P such that the permuted matrix PAP⊤ admits a block diagonal structure,

PAP⊤ =



A1

. . .

Ap


 ,

and diagonal blocks {Ai}pi=1 are either scalars or non-scalar strongly Schur-Horn con-
tinuous matrices. Their eigenvalues are ordered, i.e.,

(3.3) λmin(A1) ≤ λmax(A1) ≤ λmin(A2) ≤ λmax(A2) ≤ · · · ≤ λmin(Ap) ≤ λmax(Ap).
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Proof. Given a symmetric matrix A, let q be the number of irreducible subma-
trices in A (including scalars). We sort these submatrices in ascending order with
their smallest eigenvalue being the first index and their largest eigenvalues being the
second index. Hence, there exists a permutation matrix P such that,

PAP⊤ =



B1

. . .

Bq


 ,

and the smallest and largest eigenvalues of i-th and j-th blocks for i < j admit either,
(i) λmin(Bi) < λmin(Bj); or
(ii) λmin(Bi) = λmin(Bj) and λmax(Bi) ≤ λmax(Bj).

Following these two eigenvalue conditions, we obtain the inequality immediately,

λmin(diag(Bi, Bi+1, . . . , Bq)) = λmin(Bi).

Next, we describe a procedure to collect contiguous Bis and denote them as Aj such
that the smallest and largest eigenvalues of Ajs are ordered.

We construct A1 step-by-step and start with A1 = B1. By the construction of
PAP⊤, we know that B1 is either a diagonal matrix or an irreducible matrix. If B1

is an irreducible matrix, then by Lemma 3.6, B1 is strongly Schur-Horn continuous.
Hence, A1 = B1 is either a scalar or a strongly Schur-Horn continuous matrix.

We first consider the case that A1 is a scalar and A1 by itself is a block. Combined
with the construction of Bis, we have,

(3.4) λmax(A1) = B1 ≤ λmin(B2) = λmin(diag(B2, . . . , Bq)).

The second case is that A1 is a strongly Schur-Horn continuous matrix. Note
that according to Lemma B.1, irreducible matrix B1 satisfies that µ(ω(B1)) > 0. In
this case, we expand A1 = diag(B1, . . . , Bi) only if either Bi is an irreducible matrix
and µ(ω(A1) ∩ ω(Bi)) > 0; or Bi is a scalar and Bi ∈ ω(A1)

◦. By Lemma 3.7
and Lemma 3.8 respectively, the expanded matrix A1 = diag(B1, . . . , Bi) is strongly
Schur-Horn continuous. If the expansion terminates, we have µ(ω(A1) ∩ ω(Bi)) = 0
when Bi is an irreducible matrix, and λmax(A1) ≤ Bi when Bi is a scalar. Combined
with the construction of A1 and Bis, we have,

(3.5) λmax(A1) ≤ λmin(Bi) = λmin(diag(Bi, . . . , Bq)),

with A1 = diag(B1, . . . , Bi−1) and i > 1.
When the expansion of A1 terminates at block Bi, the construction of A2 starts

from Bi following the same procedure as above. Eventually, we obtain A1, . . . , Ap and
the inequality (3.3) follows from (3.4) and (3.5) directly.

4. Schur-Horn Continuity of Symmetric Matrices. Now we turn to the
proof of our main result, Theorem 1.3.

Proof. Our proof is similar to that of Theorem 2.2, where diagonal scalars are
replaced by either scalars or strongly Schur-Horn continuous blocks.

By Lemma 3.9, the symmetric matrix A admits a block diagonal form after a
permutation. Without loss of generality, we assume A is a block diagonal matrix,
A = diag(A1, · · · , Ap), where Ai is either a scalar or a strongly Schur-Horn contin-
uous matrix. The smallest and largest eigenvalues of these blocks are ordered as in
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(3.3). The majorization conditions hold for every symmetric block Ai and we have
λmin(Ai) ≤ dmin(Ai) and dmax(Ai) ≤ λmax(Ai).

6 Combined with (3.3), we have

dmin(A1) ≤ dmax(A1) ≤ dmin(A2) ≤ dmax(A2) ≤ · · · ≤ dmin(Ap) ≤ dmax(Ap).

The perturbed eigenvalues are denoted as λ̃i. When the eigenvalues have a gap,
i.e., λi < λi+1, the perturbed eigenvalues keep the ordering, i.e., λ̃i ≤ λ̃i+1 for suffi-
ciently small ε. When eigenvalues are identical, λi = λi+1, the perturbed eigenvalues
are ordered based on their perturbations. In another point of view, we could regard
the perturbations on identical eigenvalues as sorted perturbations. Therefore, for
ε > 0 sufficiently small, we could obtain the block-wise majorization conditions,

tr(Λ̃1) ≤ tr(A1),

tr(Λ̃1) + tr(Λ̃2) ≤ tr(A1) + tr(A2),

...

tr(Λ̃1) + · · ·+ tr(Λ̃p−1) ≤ tr(A1) + · · ·+ tr(Ap−1),

tr(Λ̃1) + · · ·+ tr(Λ̃p−1) + tr(Λ̃p) = tr(A1) + · · ·+ tr(Ap−1) + tr(Ap),

where Λ̃1, . . . , Λ̃p are perturbed diagonal eigenvalue submatrices corresponding to the

block structure as in A. We denote the block-wise perturbations as hi(ε) = tr(Λ̃i)−
tr(Ai), and similarly have,

h1(ε) + h2(ε) + · · ·+ hi(ε) ≤ 0, i = 1, 2, . . . , p− 1, and

h1(ε) + · · ·+ hp(ε) = 0.

We also maintain a priority queue with diagonal block indices as elements. For
any diagonal block index i in the queue, we ensure that h̃i(ε) is a negative perturbation
h̃i(ε) < 0, where h̃i(ε) denotes the updated perturbation throughout the procedure.
Starting from the first diagonal block, we check and enqueue the index i = 1, 2, . . .
in order if h̃i(ε) < 0 and skip the index i if h̃i(ε) = 0. We keep on checking and
enqueuing indices until the first index j such that h̃j(ε) > 0. If j does not exist, then
by the last equation in the block-wise majorization relation, we know that the queue
is also empty and the diagonal blocks of the perturbed A have all been corrected, i.e.,

(4.1) h̃i(ε) = 0, i = 1, . . . , p.

Otherwise, we obtain a j and the updated perturbations satisfy,

(4.2) h̃1(ε) + · · ·+ h̃j(ε) = h1(ε) + · · ·+ hj(ε) ≤ 0.

This condition is satisfied in the first step and we will verify it after each step. By the
j-th block-wise majorization relation, the queue is guaranteed to be non-empty. We
pop an index from the queue and denote it as i. There are two scenarios here based
on the block size of Ai and Aj .
(i) Both Ai and Aj are one dimensional, i.e., Ai = di and Aj = dj . This scenario

is the same as Theorem 2.2 for diagonal matrix and we have (2.8). Thus, if
di < dj , the Givens rotation itself is close to identity; if di = dj , while the
Givens rotation could be away from identity, the rotated matrix is close to the
original block diagonal matrix.

6Notations dmin(·) and dmax(·) denote the minimum and maximum of diagonal entries of a
matrix, respectively.
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(ii) At least one of Ai and Aj is non-diagonal strongly Schur-Horn continuous ma-
trix. By Proposition 3.5, we have either λmin(Ai) < λmax(Ai) or λmin(Aj) <
λmax(Aj), or both. Combined with the ordering of eigenvalues, (3.3), the in-
equality λmin(Ai) < λmax(Aj) holds. Thus, by Lemma 2.1, we can perform a
Givens rotation close to the identity between λmin(Ai) and λmax(Aj) to revert

−h̃i(ε), making the sum of the i-th block perturbations equals zero, i.e.,

[
λmin(Λ̃i) 0

0 λmax(Λ̃j)

]
→

[
λmin(Λ̃i)− h̃i(ε) ∗

∗ λmax(Λ̃j) + h̃i(ε)

]
.

We now have three cases: i) h̃i(ε) + h̃j(ε) < 0; ii) h̃i(ε) + h̃j(ε) = 0; and iii)

h̃i(ε) + h̃j(ε) > 0. In case i), we enqueue j and start checking the following indices.
In case ii), we skip j and start checking the indices after j. In case iii), we pop
another index from the queue and repeat the correction procedure. In all cases, the
updated total perturbations at the i-th block and the j-th block are 0 and h̃i(ε) +
h̃j(ε), respectively. Hence (4.2) holds for all indices greater or equal to j. Then, the
majorization relations guarantee that the procedure ends if and only if all diagonal
blocks have been corrected, i.e., equations (4.1) hold. Notice that all above corrections

are on the diagonal eigenvalue matrix Λ̃. The corrected matrix Λ̃(p) admits form,

Λ̃(p) =




Λ̃
(p)
1 ∗ ∗
∗ . . . ∗
∗ ∗ Λ̃

(p)
p


 ,

with Λ̃
(p)
i being diagonal matrices satisfying tr(Λ̃

(p)
i ) = tr(Ai) for i = 1, . . . , p. The

diagonals of Λ̃(p) are always O(ε) perturbation to diagonals of Λ during the trace
adjustment between diagonal blocks, i.e.,

∥∥∥Λ̃(p)
i − Λi

∥∥∥
F
= O(ε), i = 1, . . . , p.

Furthermore, analog to the proof of Theorem 2.2, it yields that all the off-diagonals
of Λ̃(p) are O(ε1/2). Thus, the distance between Λ̃ and Λ̃(p) obeys,

(4.3)
∥∥∥Λ̃− Λ̃(p)

∥∥∥
F
= O(ε1/2).

If the i-th diagonal block is a scalar, the correction procedure guarantees the
diagonal entry is correct. If the i-th diagonal block is a strongly Schur-Horn continuous
matrix, then the Definition 3.2 ensures the existence of Gi1 and Gi2 close to identity

and B̃i = Gi2QiGi1Λ̃
(p)
i G⊤

i1Q
⊤
i G

⊤
i2 has the same diagonal entries as Ai, where Qi is

the eigenvector matrix of Ai. Assembling {Qi}, {Gi1}, and {Gi2} together, we denote
them as,

G1 =



G11

. . .

Gp1


 , Q =



Q1

. . .

Qp


 , G2 =



G12

. . .

Gp2


 ,

where Gi1 = Qi = Gi2 = 1 if Ai is a scalar. By construction, we know that G1 and
G2 are close to the identity matrix with ‖Gi − I‖F = O(ε1/2) for i = 1, 2. The matrix
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B̃ = G2QG1Λ̃
(p)G⊤

1 Q
⊤G⊤

2 has the same diagonal entries as A and eigenvalues being

Λ̃. We verify that B̃ is close to A,

∥∥∥B̃ −A
∥∥∥
F
=

∥∥∥G2QG1Λ̃
(p)G⊤

1 Q
⊤G⊤

2 −QΛQ⊤
∥∥∥
F

≤
∥∥∥QG1Λ̃

(p)G⊤
1 Q

⊤ −QΛQ⊤
∥∥∥
F
+O(ε1/2)

=
∥∥∥G1Λ̃

(p)G⊤
1 − Λ

∥∥∥
F
+O(ε1/2)

≤
∥∥∥Λ̃(p) − Λ

∥∥∥
F
+O(ε1/2)

≤
∥∥∥Λ̃(p) − Λ̃

∥∥∥
F
+
∥∥∥Λ̃− Λ

∥∥∥
F
+O(ε1/2) = O(ε1/2),

where the first and second inequalities are due to the fact that G1 and G2 are close to
the identity matrix with ‖Gi − I‖F = O(ε1/2) for i = 1, 2, the second equality is due
to the unitary invariant property of the Frobenius norm, the last inequality is due to
the norm triangular inequality, and the last equality is due to the definition of Λ̃ and
(4.3).

5. Schur-Horn Continuity of Hermitian Matrices. Next, we discuss the
Schur-Horn continuity of a Hermitian matrix, as described in Theorem 1.5. The
proof follows a similar approach as that for symmetric matrices, with an extra step
to generalize Lemma 2.1 to its complex counterpart.

Denote i =
√
−1, we introduce the complex Givens rotation defined as

(5.1) G =

[
eiφ cos θ eiψ sin θ

−e−iψ sin θ e−iφ cos θ

]

where θ, φ, ψ ∈ R.

Lemma 5.1. Given ε > 0 small enough and d1, d2 ∈ R. Let a Hermitian matrix
B of form,

B =

[
b11 b12
b21 b22

]
=

[
d1 − f(ε) b12

b∗12 d2 + g(ε)

]
,

with f(ε) = Θ(εα), g(ε) = Θ(εβ) for α, β > 0. Further, we assume that

|b12|2 + f(ε)(d2 − d1 + g(ε)) ≥ 0.

Then there exists a complex Givens rotation G with rotation angle θ = Θ(εγ) and

φ, ψ ∈ R such that the (1, 1) entry of B̃ = GBG∗ is b̃11 = d1 and
∥∥∥B̃ −B

∥∥∥
F
= O(εδ)

where various scenarios of γ and δ are provided in Table 2.

Proof. Note that B is a Hermitian matrix whose diagonal entries are all real
numbers, if b12 = 0, it reduces to Lemma 2.1 and we have the conclusion for such
scenarios directly. Below we assume that b12 6= 0. Denote b12 = Re(b12) + i Im(b12)
where Re(b12) ∈ R and Im(b12) ∈ R are real part and imaginary part of b12, respec-
tively. We further split the discussion into two scenarios: (i) Re(b12) 6= 0 and (ii)
Re(b12) = 0.

First, if Re(b12) 6= 0, we still apply the real Givens rotation denoted as G =
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Various Scenarios γ δ

b12 6= 0 α α

b12 = 0 d1 6= d2 α/2 α/2

b12 = 0 d1 = d2 α > β (α− β)/2 (α + β)/2

b12 = 0 d1 = d2 α ≤ β 0 α

Table 2

Various scenarios of b12, d1, d2, γ, and δ for Lemma 5.1.

[
c s
−s c

]
with c = cos θ and s = sin θ to matrix B and obtain,

GBG∗ =

[
c2b11 + s2b22 + 2csRe(b12) ω

ω∗ c2b22 + s2b11 − 2csRe(b12)

]
,

with ω = cs(b22 − b11) + (c2 − s2)Re(b12) + i Im(b12). Equating the (1, 1) entry of

B̃ = GBG∗ and d1 it leads to

c2b11 + s2b22 + 2csRe(b12) = d1,

which is analogous to (2.2) in the proof of Lemma 2.1 with b12 replaced by Re(b12).
Note that Re(b12) 6= 0, adopting a similar analysis one concludes that γ = α and
δ = α.

Second, if Re(b12) = 0, at this time from b12 6= 0 we must have Im(b12) 6= 0. Thus

we consider another Givens rotation matrix denoted as G =

[
ic s
−s −ic

]
, with φ = π

2

and ψ = 0. Applying G from the left of B and G∗ from the right of B we get,

GBG∗ =

[
c2b11 + s2b22 − 2csIm(b12) ω

ω∗ c2b22 + s2b11 + 2csIm(b12)

]
,

with ω = ics(b22 − b11) − i(c2 − s2)Im(b12) − Re(b12). Equating the (1, 1) entry of

B̃ = GBG∗ and d1 it leads to

c2b11 + s2b22 − 2csIm(b12) = d1,

which is analogous to (2.2) in the proof of Lemma 2.1 with b12 replaced by −Im(b12).
Note that Im(b12) 6= 0, adopting a similar analysis one concludes that γ = α and
δ = α.

Now, we generalize the definition of strong Schur-Horn continuity for symmetric
matrices to Hermitian matrices, by simply replacing orthogonal matrices in Defini-
tion 3.2 with unitary matrices.

Definition 5.2 (Strong Schur-Horn Continuity for Hermitian Matrices). Suppose
A ∈ Cn×n is a Hermitian matrix with an eigendecomposition A = QΛQ∗, where Q
is the unitary eigenvector matrix and Λ is the diagonal eigenvalue matrix. Matrix
A is strongly Schur-Horn continuous if, for any perturbed eigenvalues Λ̃ satisfying

tr(Λ̃) = tr(Λ) and
∥∥∥Λ̃− Λ

∥∥∥
F

= O(ε) for ε > 0 sufficiently small, there exists a

Hermitian matrix B̃ = G2QG1Λ̃G
∗
1Q

∗G∗
2 such that
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1. diag(B̃) = diag(A),
2. G1 and G2 are unitary matrices, and
3. ‖Gi − I‖F = O(ε1/2) for i = 1, 2.

With Lemma 5.1, one can verify that the desired properties of strong Schur-Horn
continuity appeared in section 3 also hold for Hermitian matrices. Thus, by employing
a similar analysis, one can prove Theorem 1.5 and establish the Schur-Horn continuity
of Hermitian matrices, and we omit the details.

6. Conclusion. In this paper, we explore the eigenvalue perturbation of a sym-
metric (Hermitian) matrix with fixed diagonals, which is referred to as the continuity
of the Schur-Horn mapping. We first establish the Schur-Horn continuity for real
diagonal matrices leveraging Givens rotation and majorization relations between di-
agonals and eigenvalues. Then, we introduce the concept of the strong Schur-Horn
continuity, which is a stronger version of Schur-Horn continuity. This allows us to
construct a block-wise majorization relation and prove the Schur-Horn continuity for
general symmetric matrices. Additionally, our analysis could be extended to Hermi-
tian matrices to establish their Schur-Horn continuity.

Acknowledgments. This work is supported in part by the National Natural Sci-
ence Foundation of China (12271109) and Shanghai Pilot Program for Basic Research
- Fudan University 21TQ1400100 (22TQ017).

Appendix A. Proof of Proposition 3.5.

Proof. We prove by contrapositive. If A is not a scalar matrix and does not satisfy
(3.1), then we have either (i) A not satisfying the majorization relation (1.1); or (ii)
A satisfying the majorization relation, but there exists 1 ≤ i, j < n such that,

λ1 + · · ·+ λi = d1 + · · ·+ di, and λ1 + · · ·+ λj < d1 + · · ·+ dj .

In case (i), A does not satisfy the majorization relation. Hence, by Schur-Horn
theorem, A is not strongly Schur-Horn continuous.

In case (ii), we have λ1 < λn. The discussion is further split into two scenarios:
(ii.1) λi < λn and (ii.2) λi = λn.

In (ii.1), we denote those eigenvalues equal to λi and λn as follows,

λℓ < λℓ+1 = · · · = λi = · · · = λr < λr+1, and λk < λk+1 = · · · = λn,

where 0 ≤ ℓ < i ≤ r ≤ k < n. Then we consider a particular perturbation by adding
an ε > 0 small enough to those eigenvalues equal to λi and subtracting r−ℓ

n−kε from
those eigenvalues equal to λn, i.e.,

λ̃ =
(
λ1, · · · , λℓ, λℓ+1 + ε, · · · , λi + ε, · · · , λr + ε,

λr+1, · · · , λk, λk+1 −
r − ℓ

n− k
ε, · · · , λn − r − ℓ

n− k
ε
)
.

This perturbed Λ̃ = diag(λ̃) satisfies tr(Λ̃) = tr(Λ) and
∥∥∥Λ̃− Λ

∥∥∥
F
= O(ε). Further-

more, λ̃ is still in a non-decreasing order for ε > 0 sufficiently small. While, the i-th
majorization relation between λ̃ and d is violated,

λ̃1 + · · ·+ λ̃i = λ1 + · · ·+ λi + (i− ℓ)ε = d1 + · · ·+ di + (i − ℓ)ε > d1 + · · ·+ di.
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By Schur-Horn theorem, there does not exist a matrix with diagonal and eigenvalues
being d and λ̃, respectively. Hence, A is not strongly Schur-Horn continuous.

In (ii.2), we have λ1 < λi = λn. Denote those eigenvalues equal to λ1 and λi as
follows,

λ1 = · · · = λr < λr+1 and λk < λk+1 = · · · = λi = · · · = λn,

where 1 ≤ r ≤ k < n. Consider a particular perturbation by subtracting ε > 0 from
those eigenvalues equal to λi and adding n−k

r ε to those eigenvalues equal to λ1 as
follows,

λ̃ =

(
λ1 +

n− k

r
ε, · · · , λr +

n− k

r
ε, λr+1, · · · , λk, λk+1 − ε, · · · , λn − ε

)
.

This perturbed Λ̃ = diag(λ̃) satisfies tr(Λ̃) = tr(Λ) and
∥∥∥Λ̃− Λ

∥∥∥
F
= O(ε). Further-

more, λ̃ is in a non-decreasing order when ε > 0 is sufficiently small. Similarly, the
i-th majorization relation between λ̃ and d is violated,

λ̃1 + · · ·+ λ̃i = λ1 + · · ·+ λi + r · n− k

r
ε− (i − k)ε

= d1 + · · ·+ di + (n− i)ε > d1 + · · ·+ di.

By Schur-Horn theorem, there does not exist a matrix with diagonal and eigenvalues
being d and λ̃, respectively. Hence, A is not strongly Schur-Horn continuous.

Appendix B. Spectrum Window for Irreducible Matrices.

Lemma B.1. If A is an irreducible symmetric matrix whose dimension is strictly
greater than 1, then λmin(A) < λmax(A).

Proof. Consider the eigendecomposition A = QΛQ⊤ of the symmetric matrix
A, where Q is the orthonormal matrix composed of the eigenvectors of A, and Λ
is the diagonal eigenvalue matrix. Suppose λmin(A) = λmax(A) = λ, then we have
A = Q · λI ·Q⊤ = λI, which contradicts the irreducibility of A.
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