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Unsupervised training

1. Introduction

Simulation of physical models has been one of main driven forces for scientific computing. Physical phenomena at
different scales, e.g., macroscopic scale, microscopic scale, etc., are characterized by Newton’s laws of motion, Darcy’s law,
Maxwell’s equations, Schrédinger equation, etc. Solving these equations efficiently, especially those nonlinear ones, has chal-
lenged computational scientists for decades and led to remarkable development in algorithms and in computing hardware.
As the rise of machine learning, particularly deep learning, many researchers have been attempting to adopt artificial neu-
ral networks (NN) to represent the high-dimensional solutions or the low-dimensional solution maps. This paper proposes
a variational training framework for solving the solution map of low-dimensional physical models via NNs. Here we em-
phasize solving a solution map in contrast with fitting a solution map, where solving can be to some extent viewed as
unsupervised learning with input functions only and fitting refers to supervised learning with both input functions and the
corresponding solutions.

Solving the solution map for physical models is feasible due to an intrinsic difference between the physical problems
and other data-driven problems, e.g., handwriting recognition, speech recognition, spam detection, etc. Indeed, for physical
models, the solution maps are governed by well-received equations, which are often expressed in partial differential equa-
tions (PDEs), whereas the conventional machine learning tasks such as image classification rely on human labeled data set
without explicit expression for the underlying model. Benefiting from such a difference, we design loss functions based on
the PDEs, in another word, we adopt the model information into the loss functions, and solve the solution map directly
without knowing solution functions.
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1.1. Related work

A number of recent work utilized NNs to address physical models. Generally, they can be organized into three groups:
representing solutions via NNs, representing solution maps via NNs, and optimizing traditional iterative solvers via NNs.
Representing solutions of physical models, especially high-dimensional ones, has been a long-standing computational chal-
lenge. NN with multiple input and single output can be used as an ansatz for the solutions of physical models or PDEs,
which is first explored in [29] for low-dimensional solutions. Many high-dimensional problems, e.g., interacting spin mod-
els, high-dimensional committor functions, etc., have been recently considered for solutions using NN ansatz with variants
optimization strategies [5,7,9,19,26,37,36]. NN, in this case, is valuable in its flexibility and richness in representing high-
dimensional functions.

Representing the solution map of a nonlinear problem is challenging as well. For linear problems, the solution map can
be represented by a simple matrix (i.e.,, Green’s function for PDE problems). While the efficient representation for solution
map is unknown for most nonlinear problems. Traditional methods in turn solve nonlinear problem via iterative methods,
e.g., fixed point iteration. Since NN is able to represent high dimensional nonlinear mappings, it has also been explored
in recent literature to represent solution maps of low-dimensional problems on mesh grid, see e.g., [10-12,20,25,27,30,
34,38,39]. These NNs are fitted by a set of training data with solution ready, i.e., labeled data. Most works from the first
two groups focus on creative design of NN architectures, in particular trying to incorporate knowledge of the PDE into the
representation.

The last group, very different from previous two, adopts NN to optimize traditional iterative methods [14,23,24,35].
Once the iterative methods are optimized on a set of problems, generalization to different boundary conditions, domain
geometries, and other similar models, is explored and can be sometimes guaranteed [23].

1.2. Main idea

The goal of this work is to propose a new paradigm of training neural networks to approximate solution maps for
physical PDE models, which does not rely on existing PDE solvers or collected solution data. The main advantages come in
two folds: the new training framework removes the expensive data preparation cost and obtains an input-data-adaptive NN
with better accuracy in terms of intrinsic criteria from the PDE after training.

We now explain the main idea of the new training framework through the example of solving a (possibly nonlinear)
system of equations. Later in Section 3, we will show that the training framework can be applied to solve the solution map
of linear and nonlinear eigenvalue problem as well.

Let us consider a system of equations, written as

Aw) = f, (1)

with u and f denoting solution and input functions on a mesh and .4 denoting a discretized forward operator. The goal
here is to obtain the solution mabp, i.e.,

u=A"HH N (), 2)

which is approximated by a NN Aj parameterized by 6. The input data f is usually collected from practice following an
unknown distribution D¢, denoted as f ~ Dy. Ideally, NN not only approximates the inverse map A1, but also adapts to
the distribution, ie, Ny ~ A |p,.

Almost all previous works design NN Ay based on properties of the problem and then fit the solution map following
the flowchart in Fig. 1 (a). We call such a training procedure fit-training framework. In practice, there are two procedures for
generating training data pair, {u;, f;};_" N"‘"“

(TD.1) Collect a set of {f,}N"a‘" and solve u; = A~'(f;) with traditional methods;
(TD.2) Randomly generate a set of solution data, {ui}f\f{‘i“ and evaluate f; = A(u;).

The first procedure suffers from expensive traditional method in solving .A~!, especially when the equation is complicated
and nonlinear. While, the resulting training data set from the first procedure follows the practical distribution Dy. Hence
fitting Ay with this data set approximates .4~! I, The second procedure is efficient in generating data since A is usually
cheap to evaluate. However, the data set lacks proper distribution, i.e., f; ~ Dy. An accurate solution map requires Ay to
be a good representation of A~ instead of A~ |p T which is much more difficult to approximate in general.

Under our new training framework, illustrated in Fig. 1 (b), u; is not required in the loss function hence not required in
the training procedure. Instead, the forward mapping .4 is brought into the loss function. One simplest example of such a
loss function in the sense of mean square error is

Ntlaln

Z ||f1 NQ(fl))‘

i=1

e(LFm AN ) = =

(3)
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(a) Fit-training framework. (b) Solve-training framework.

Fig. 1. Flowchart of (a) fit-training framework and (b) solve-training framework. Rounded corner rectangles in general indicate processes whereas the
red ones are computationally expensive processes; parallelograms indicate data or NNs; punched tapes are loss functions which require creative design
depending on the problem; line arrows indicate dependencies between blocks. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

where A in our implementation is represented by an NN with fixed parameters. In contrast to the fit-training framework,
the proposed training framework - solve-training framework - has at least three advantages:

1. Solving u; = A~'(f;) via expensive traditional method is not needed;

2. The trained NN N is able to capture A~! IDf s

3. The parameters obtained through solve-training framework minimize the “.4-norm” between Ny (f) and u, = A~1(f),
ie.,

| = AN (D) || = It = No ()4, (4)

if A satisfies assumptions such that ||-|| 4 is well-defined.

Regarding the last point above, fit-training framework minimizes 2-norm between Ny (f) and u,, which corresponds to
least square fitting for linear operators. Hence we claim that solve-training framework is more likely to obtain an NN
Ny which solves A(u) = f given f ~ Dy. Other than the neural network approximation error, solve-training framework
contains one more source of approximation, the discretization error of the real forward operator to .A. Since the discretized
forward map A is represented by a fixed neural network, which does not increase the number of trainable parameters
in the training part, we can use high-accuracy discretization schemes to significantly reduce the discretization error and
make the error much less than the neural network approximation error. The discretization error is also contained in the
fit-training framework, since we need to solve the discretized equation to provide training data.

In this work, we demonstrate the power of the solve-training framework through training the NNs representing the
solution maps of linear and nonlinear systems and linear and nonlinear eigenvalue problems. We remark that while finishing
the work, we discovered some very recent works [3,42] aiming at solving inverse problems, whose training strategy shares
some similarity with the solve-training framework we proposed above.

1.3. Organization

The rest of the paper is organized as the following. Section 2 applies the solve-training framework to solving linear and
nonlinear systems. The corresponding numerical results are attached right after the problem description. Similar structure
applies to Section 3, in which we solve linear and nonlinear eigenvalue problems rising from Schrodinger equations. Finally,
Section 4 concludes the paper with discussions on extensibility.

2. Solving linear and nonlinear systems

This section aims to show that the solve-training framework can be applied to obtain the NN representation of the
solution maps of linear and nonlinear systems. The main idea of solve-training framework for solving systems has been
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illustrated in Section 1.2. We will demonstrate the efficiency of the solve-training framework through two examples, linear
elliptic equation and nonlinear elliptic equation.

2.1. Linear elliptic equations

In this section, we focus on the two dimensional linear variable coefficient elliptic equations with periodic boundary
condition, i.e.,

—V.ax, y)Vu@, y) = f(x,y), *y) e€Q=[0,1)% (5)

where a(x, y) > 0 denote variable coefficients. Such an equation appears in a wide range of physical models governed by
Laplace’s equation, Stokes equation, etc. For (5) with constant coefficients, the inverse operator' has an explicit Green’s
function representation and can be applied efficiently with quasilinear cost through fast multipole methods [13,15,41], or
other related fast algorithms [8,22]. When the coefficient is variable, then the operator in (5) is discretized into a sparse
matrix, and solved via iterative methods with efficient preconditioners [6,16,18,21,31,40]. Among these preconditioners, H-
matrices [16,18] are efficient preconditioners of simplest algebraic form and the structures with modifications are recently
extended to NN structures [10,11]. While, the construction of the #-matrices for the inverse of variable coefficient elliptic
equations requires sophisticated matrix-vector multiplication on structured random vectors [33]. In this section, we adopt
the original structure of #-matrix in Ny with and without ReLU layers. Solve-training framework then provides a method
to construct the #H-matrix with a limited number of input functions.

The discretization of (5) used here is the five-point stencil on a 64 x 64 uniform grid. The discretization points are
{xi, yj}?j.zo with x; =i/64 and y; = j/64. And the discrete variable coefficient a(x;, y;) is a Chess board field as,

10, [%]=0(mod2)

8 . 6
1, [%l]=1(mod2) ®)

a(xi,yj)=[

And we generate Ny, random vectors { f l-};v:“]“‘" as the training data. Each f; is a vector of length 64% with each entry being
uniform random on [— V/3/642, \/3/642] such that IE(||fi ||> =12 and subtract its mean to incorporate with the periodic

boundary condition. This procedure defines Dy, which will be less emphasized for linear model in this section. Another set

of Ntest = 5,000 random vectors of the same distribution, {gﬁ?’f{ﬂ is generated for testing purpose. The reported relative
error is calculated as follows,

8i— A(Ne(gi)) H
Niest i ” 8i H .

Four H-matrices are generated and compared in this section. The structures of all these 7{-matrices are generated
from bi-partition of the domain up to four layers and each low-rank submatrix is of rank 96. Readers are referred to the
textbook [17] for the detailed structure of an #H-matrix. The first H-matrix is constructed directly from the inversion of
the discretized sparse matrix and each low-rank block is constructed via the truncated singular value decomposition (SVD).
This H-matrix is close-to-optimal in the standard H-matrix literature and is used as the baseline for the comparison. We
denote it as H-matrix (SVD) in the later content. The second and third 7{-matrices are constructed in the same way in
Tensorflow [1]. The second one is initialized with random coefficients and then trained, whereas the third one is initialized
with the baseline H-matrix and then trained. They are denoted as NN-H-matrix (rand init) and NN-H-matrix (SVD init)
respectively. The last #-matrix uses the same structure but with each small dense block coupled with 5 ReLU layers in
the similar fashion as in [11]. This H-matrix is initialized with SVD coefficients and the ReLU part is initialized in a way
such that the initial output (no train) is the same as that of 7-matrix (SVD) and then trained. It is denoted as NLNN-7#{-
matrix (SVD init).

We train the later three H-matrices under the solve-training framework with Adam optimizer [28]. The batch size is
100 for all trainings. For NN-#-matrix (SVD init) and NLNN-#-matrix (SVD init), a fixed stepsize 2 x 1078 is used. While,
for NN-7{-matrix (rand init), the stepsize is initialized as 2 x 10~ following a steady exponential decay to 2 x 1075, For
each #H-matrix, we train the NN for three times and report the best among them. Default values are used for all other
unspecified hyperparameters.

N
l test

(7)

Numerical results
We first compare the performance of the first three 7{-matrices described above through numerical experiments under
the solve-training framework.

1 When (5) has constant coefficient with periodic boundary condition, the most efficient method should be fast Fourier transform.
2 Notice that normalization here is not important for the linear model and we will use relative error as the measure in the later numerical results.
However, the NN package Tensorflow [1] uses float32 as the default data format and such a normalization reduces the impact of numerical errors.
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Table 1

Train and test relative error of solve-training framework in linear elliptic equation for different #-matrices. The train and test data sets are of size Nijn =
10000 and Niest = 5000.

H-matrix # Epoch Train loss Test loss Train rel err Test rel err

H-matrix (SVD) 0 2.21e-3 2.20e—3 4.68e—2 4.66e—2

NN-7-matrix (rand init) 25000 2.09e—4 3.38¢e—4 1.44e—-2 1.83e—2

NN-#-matrix (SVD init) 2000 2.43e—4 3.40e—4 1.55e—2 1.83e-2
Table 2

Train and test relative error of solve-training framework in linear elliptic equation for different #-matrices. The train and test data sets are of size Nipjn =
4000 and Niest = 5000.

H-matrix # Epoch Train loss Test loss Train rel err Test rel err

H-matrix (SVD) 0 2.20e—3 2.20e—3 4.66e—2 4.66e—2

NN-7#-matrix (rand init) 60000 1.34e—4 4.18e—-2 115e—2 1.96e—1

NN-7-matrix (SVD init) 6000 1.58e—4 7.20e—4 1.25e—2 2.67e-2
10° : ‘ w 10° ‘ : ;

E| E|
S 10° 1 S 10° 1
3 3
= —No Preconditioner = —No Preconditioner
—H-matrix (SVD) —H-matrix (SVD)
10”10 f--NN-H-matrix (SVD init) ‘ ‘ 10”1 JL_NN-H-matrix (SVD init) ) )
2 4 6 8 10 2 4 6 8 10
iteration number iteration number
(a) (b)

Fig. 2. Examples of residual of using the conjugate gradient method to solve the linear elliptic equation, where -matrix (SVD) and the trained NN-#-
matrix (SVD init) are applied as preconditioners respectively. The train and test data sets are of size Nijy = 10000 and Niest = 5000.

0.05 " i ; .
0.045
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0.035
0.03
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0.02 b
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Epoch

N, . =10000|
N, . =4000

[ train~

Test relative error

Fig. 3. The test relative error of NN-#-matrix (SVD init) against epochs.

Table 1 and Table 2 present the number of epoches, train loss, test loss, train relative error, and test relative error for
the first three 7 -matrices with Nipin, = 10000 and Ny, = 4000 respectively. All of these matrices share exactly the same
structure and are all linear operators. Since these 7{-matrices are trained on a uniform random input function and they
are linear, the test relative error is generalizable to other non-normalized general input functions. When N i, = 10000,
we notice that NN-#-matrix (rand init) and NN-#-matrix (SVD init) achieve almost identical losses and relative errors
after training under the solve-training framework, although the efficient training of NN-#-matrix (rand init) requires more
aggressive choice of stepsize in the beginning of the training. Since we inject part of the information of the system into the
NN through the carefully designed architecture, training under solve-training framework is able to approximate the solution
map with the number of training data Ny,i, smaller than the size of the matrix, i.e., Niqjn = 4000. In this case, NN-H-
matrix (SVD init) is able to achieve similar results as that with Ny, = 10000. While NN-7{-matrix (rand init) achieves
similar train results but less accurate test results.

In general, after training, the relative error for NN-7{-matrices is better than that of the #-matrix (SVD), which means
that the low-rank approximation in #-matrix can be further improved. Low-rank approximation through truncated SVD
achieves best 2/F-norm approximation locally in each block, whereas the trained NN-7{-matrix achieves near-optimal low-
rank approximation in the global sense. Also, Fig. 2 shows examples of residual of using the conjugate gradient method to
solve the linear elliptic equation, where H-matrix (SVD) and the trained NN-7#-matrix (SVD init) are applied as precondi-
tioners respectively. The trained NN-7-matrix achieves smaller residual than #-matrix after the same number of iteration
steps. Hence the solve-training framework can be applied to, either obtaining the 7{-matrix representation of the inverse
variable coefficient elliptic operator, or further refining some existing fast algorithms and achieves better approximation
accuracy. In addition, Fig. 3 shows the refinement step is quite efficient. The initial test relative error equals 0.0466 and
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Fig. 4. Train loss and test loss for (a) NN-7-matrix (SVD init) and (b) NLNN-7-matrix (SVD init) against epochs.

monotonically drops as the training goes on. After roughly 1000 epoches, training with Nqjn = 10000 samples, the test
relative error reaches a plateau with values about 0.02.

NLNN-#-matrix (SVD init) is a nonlinear operator approximating the discrete inverse matrix of (5). Fig. 4 (b) shows that
its training behavior and as a comparison, Fig. 4 (a) shows the training behavior of NN-7-matrix (SVD init). We observe
severe over fitting issue occurs in training NLNN-H-matrix (SVD init). Hence, for linear elliptic equations, training linear
operators under the solve-training framework is a more preferred strategy to represent A~! |p ; accurately.

2.2. Nonlinear elliptic equation

In this section, we focus on a two dimensional nonlinear variable coefficient elliptic equation with periodic boundary
condition, i.e.,

—V.ax, y)Vux, y) +bid(x, y) = fx,¥), (xy)eQ=10,1) (8)

where a(x, y) > 0 denote variable coefficients and b denotes the strength of the nonlinearity. This equation adds a cu-
bic nonlinear term to (5) with coefficient b and is also related to the nonlinear Schérdinger equation introduced later in
Section 3.2. Solving such an equation can be achieved through a carefully designed fixed-point iteration. Hence obtaining
training data {u;, f ,-}fffi“ for fit-training framework is expensive. In this section, we apply the solve-training framework to
train an NN, Ny, to represent the solution map from f to u.

We discretize (8) over a 32 x 32 uniform grid with five-point stencil. The discretization points are {x;, y 1}1'3,11‘:0 with
xi=1/32 and y; = j/32 and the discrete variable coefficient a(x;, y;) is defined the same as in (6). And b is set to be 0.1.

In order to show the advantage of the solve-training framework regarding data distributions, we train and test this
example with three different ways of generating training data { f i}iv:";“":

Nitrain

D1) Generate a set of solution data {u;}; ™" with each entry following the normal distribution A(0,10~%), and then
i=1

evaluate f; = A(u;).
(D2) Generate a set of solution data {u,-}fi’f‘“ and each u; is a convolution of a Gaussian kernel of standard deviation %

with a random vector with each entry following the normal distribution A/(0, 10~%). Then evaluate fi=A@).

(D3) Generate {f ,-}fff‘“ and each f; is a convolution of a Gaussian kernel of standard deviation 11—6 with a random vector

three entries of which are randomly picked up to follow the uniform distribution 2/(0.1,0.3) and other entries equal
to 0. All f; is subtracted by its mean and hence is mean zero.

We assume D3 generates the input data, which is regarded as the collected data. D1 and D2 are two designed distributions
generating training data for the purpose in TD.2 and hence the expensive traditional solving step is avoided. For each kind
of data, Nain = 50,000 training samples and Niest = 5,000 testing samples of the same distribution are generated. The
reported relative error is calculated as (7).

To authors’ best knowledge, no existing NN structure is designed to represent the solution map of (8). Since the focus of
this paper is not on the creative design of the NN structure, we construct a simple NN but by no means an efficient one for
the task. Thanks to the universal approximation theory [4], the solution map can be represented by a single layer NN with
accuracy depending on the width. We construct an NN with one fully connected layer of 10240 units using ReLU activation
function to approximate the solution map of (8).

We train the single layer NN under the solve-training framework and also the fit-training framework for comparison
purposes with Adam optimizer. The batch size is 100 for all trainings. The NN is trained for 10000 epochs with stepsize
2 x 1074, Default values are used for all other unspecified hyperparameters.

Numerical results
Since D3 is assumed to be the given data following the distribution of interest Dy, to train an NN representing A1 p f

under fit-training framework, one has to solve .A~! by expensive traditional methods. Another choice for fit-training frame-
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Table 3
Relative error of solve-training framework and fit-training framework for the nonlinear elliptic equation given different kinds of train and test data.
Train data Train loss Train rel err Test data Test loss Test rel err
Fit-training D1 3.13e—6 6.22e—4 D3 - 1.60e+1
D2 2.52e—5 1.65e—2 D3 - 1.29e+-0
Solve-training D3 3.00e—4 1.71e-3 D1 1.81e+3 4.34e+0
D2 3.05e+1 9.90e—1
D3 6.18e—4 1.96e—3
Solve-training D3-N 1.03e—2 1.00e—2 D3 6.31e—4 2.01e-3

work is to obtain training data from other distributions and generalize to Dy. Hence we proposed D1 and D2 as alternative
choices of the distribution and validate the generalizability to D3. However, solve-training framework approximates A~ |p ;
directly. If A~1 IDf is much easier for NN to represent than .A~!, then the generalizability of the trained NN under solve-
training framework to D1 and D2 should be limited.

Table 3 illustrates test relative error of fit-training framework and solve-training framework for the nonlinear elliptic
equation (8) given different choices of train and test data. Comparing the second to last row in Table 3 against two rows
of fit-training framework, we conclude that solve-training framework successfully trained a NN for approximating A~! |p !
since both the train and test relative error achieves almost three digits of accuracy. While NN trained under fit-training
framework on a synthetic distribution D1 and D2 achieves excellent relative error on training data but fails to produce
reliable prediction for data in D3. Since D2 is smoother than D1, which has closer distribution to D3, NN trained under
fit-training framework on D2 performs sightly better than that on D1. Here we also include the test loss and relative error
of NN, which trained under solve-training framework on D3, on D1 and D2 in Table 3. The success of the approximation of
the solution map is distribution dependent. Solve-training framework is also robust to the noise in data. D3-N in the last
row of Table 3 is obtained by adding Gaussian white noise A/(0,0.01) to D3. Though the training loss and relative error
increase, the test loss and relative error on D3 are only slightly higher than the results of NN trained directly on D3 without
any noise. Regarding the computational cost of fit-training framework and solve-training framework, although we have extra
cost in applying A in the train procedure, it is negligible comparing to the cost of other parts in NN. In practice, we observe
that the runtime for the train procedures of all experiments for both fit-training framework and solve-training framework
in this section are about the same.

3. Solving linear and nonlinear eigenvalue problem

This section aims to show that the solve-training framework not only can be applied to solve linear and nonlinear
systems but also can be applied to solve the solution map of smallest eigenvalue problems.
Given an abstract eigenvalue problem as

AuX), VX)) = Eu(x), (9)

where A denotes the operator, V(x) denotes the external potential, u(x) is the eigenfunction corresponding to the eigen-
value E. Many physical problems interest in the computation of the ground state energy and ground state wavefunction, i.e.,
the smallest eigenvalue and the corresponding eigenfunction. Since V (x) is the input external potential function, we define
the solution map of (9) being the map from V (x) to u(x) which corresponds to the smallest eigenpair, i.e., M (V (x)) = u(x).
In the discrete setting, we abuse notation M to represent the discrete solution map, i.e., M(V) =u, where V and u denote
discrete potential function and ground state wavefunction respectively. Earlier work [11] shows that a specially designed NN
is able to capture the solution map M given the distribution of V as Dy, i.e,

No(V)~ M |p, (V)=u, (10)
where Ny denotes an NN parameterized by 6.

Under fit-training framework, as in most of previous work, the training of A relies on the following loss function,

Ntrain

. ) 1
(Vi (s Ny ) = —— D7 ING (Vi) — il (11)
1

train im

where {u;, Vi},&‘f‘“ are training data. For eigenvalue problem, it becomes infeasible to obtain the training data through the
forward mapping of randomly generated u;, since the ground state energy E; is unknown. Hence obtaining training data
requires solving a sequence of expensive linear/nonlinear eigenvalue problems.

For the eigenvalue problems, it is computationally beneficial if the training can be done under solve-training framework.
However, designing the loss function is tricky and problem dependent under the solve-training framework. Even if we
assume E is represented by another NN, the naive loss function, i.e., the two-norm of the difference of two sides of (9), does
not work, since such a loss has multiple global minima corresponding to all eigenpairs of (9). Hence, solving the naive loss
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function in many cases does not give the eigenpair associated with smallest eigenvalue. For the following linear Schrédinger
and nonlinear Schrédinger equations, we propose two loss functions to train the NN under solve-training framework.

3.1. Linear Schridinger equation

This section focuses on training the solution map of the smallest eigenvalue problems of the linear one-dimensional
Schrédinger equation as,

—Au(x)+V®xukx)=Eukx), xeQ=[0,1)
s.t./u(x)zdx:l, and/u(x)dx>0, (12)

Q Q
with periodic boundary condition. The second positivity constraint in (12) can be dropped since if u(x) is the eigenvector
associated to the smallest eigenvalue then so is —u(x). Besides, the right-hand side of the first constraint in (12) can take
any positive constant since this eigenvalue problem is linear.
The external potential is randomly generated to simulate crystal with two different atoms in each unit cell, i.e., V (x) is
randomly generated via,

2 ) _ i ]2
vio=-Y Y %exp<—%>, (13)

i=1 j=—00

where ¢ ~14(0,1) for i =1, 2 are the locations of two atoms, and p® ~1/(10,40) and T ~U/(2,4) x 1073 characterize
the mass and electron charges of atoms. Here ¢/ (a, b) denotes the uniform distribution on the interval (a, b).

In this section, the linear Schrédinger equation (12) is discretized on a uniform grid in [0, 1) with 2048 grid points. The
Laplace operator in (12) is then discretized by the second-order central difference scheme. Each input vector V composes
of the external potential V (x) evaluated at grid points.

We propose a loss function as in the quadratic form,

Ntrain
N .
e(tvaflee, A NG) = 3 (No(V)I=A -+ ViING (V) (14)
i=1
which depends only on {V,-}f\ffi“, A, Ny. When Ny outputs a normalized result, each term in the loss function is a varia-
tional form of the eigenvalue. Hence, minimizing the loss function gives the ground state energy E if Ny is able to capture
the solution map of (12).

In addition to Ny, training set {V,~}N‘“"irl

i=1 >
as (13), {Wi},{\iﬁﬁ, is generated for testing purpose. The train and test loss as (14) is the summation of all smallest eigenval-
ues and does not show the approximation power of Ay to the solution map given the distribution of V. Hence, we compare
the output of trained Ay against the underlying true smallest eigenvector and report the relative error, which is calculated

as follows,

another set of N random external potential vectors of the same distribution

1 Niest
> llui = No(Wi)l, (15)
Ntest <
i=1
where u; is the normalized smallest eigenvector corresponding to W; for i =1, ..., Nest. Equation (15) is called the relative
error since u; for i=1, ..., Nwst are normalized, i.e., |u;| =1.

Since Fan et al. [11] designed an H-matrix inspired NN structure, called #-net in this paper, and successfully fitted the
solution map of nonlinear Schrédinger equations under the fit-training framework, we adopt their structure here with a
small modification to enforce the normalization constraint. More precisely, the #-net is generated with eight layers and
each low-rank block is of rank 6. We vary the number of ReLu layers in the dense block, and the number is denoted as K
in the later content. One extra normalization layer is added in the end of #-net, ie.,

Ny
V _ T~ > 16
No(V) 17 (16)
where Ay is the regular H-net [11] and Ny is the NN used in this section. Since the normalization layer does not involve
any parameter, the same 6 is used for both ./% and Ng.

We train Ny under the solve-training framework and also the fit-training framework for comparison with Adam opti-
mizer. The batch size is 100 for all trainings. Ay is trained for 60,000 epochs with stepsize as 2 x 10~4. Default values are
used for all other unspecified hyperparameters.
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Table 4
Relative error of Ny with K =5 trained under solve-training framework for linear
Schrédinger equation given different sizes of train and test data set.

Ntrain Niest Train rel err Test rel err

500 5000 9.46e—2 1.01e—1

1000 5000 2.07e-2 2.54e—2

5000 5000 711e-3 8.16e—3

20000 20000 7.84e—3 8.15e—3
Table 5

Relative error of Nj trained under solve-training framework for linear Schrédinger
equation with different number of ReLU layers K. The train and test data sets are of
size Nirain = 5000 and Niese = 5000.

K Nparams Train rel err Test rel err
1 15184 1.70e—1 1.72e—-1
3 34236 2.88e—2 3.00e—2
5 57156 7.11e-3 8.16e—3
7 83944 5.87e—3 7.59e—3
0 . . . .
-50 0.01r |
>-100 S
0 L 4
-150
-200 ' ' ' * 0 -0.01 * * * *
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
(a) (b)

Fig. 5. (a) An example of external potential V, predicted solution uyy and the corresponding reference solution uef with K =5 and Ny = 5000. (b) Error
between reference solution and predicted solution uef — UnN.

Table 6

Relative error and predicted ground state energy E of Nj trained under solve-
training framework and fit-training framework for linear Schrodinger equation with
K =5 and Nypin = Niest = 5000.

Train rel err Test rel err Train energy Test energy
Fit-training 3.66e—3 4.86e—3 —112.51 —-110.77
Solve-training 711e-3 8.16e—3 —113.31 —111.60

Numerical results

We first compare the performance of Ny trained under solve-training framework for different number of train data set
size Ninin and different number of ReLU layers K through numerical experiments.

Table 4 presents the relative errors for different Nipin and Nist with K = 5. The test relative error decreases as Nirain
increases. However, N.in = 5000 train samples have already been able to provide near-optimal results, since both the train
relative error and the test relative error stay similar for Nygi, = 5000 train samples and N4, = 20000 train samples. Hence,
in this section, we adopt Najn = 5000 and Niest = 5000 for all later experiments.

Table 5 presents results for different number of ReLU layers K with Nipin = Niest = 5000. As there are more RelU layers,
we observe that the number of parameters increase monotonically and both the train and test relative errors decrease
monotonically, which leads to a natural trade-off between accuracy and efficiency. According to Table 5, the performance
improvement is marginal beyond 5 RelLU layers. Fig. 5 (a) shows an example of the external potential, the predicted and
the corresponding reference solution with K =5 and Nipin = 5000. The first constraint in (12) requires the norm of the
discrete solution u to be /2048 in our discretization settings. As a result, we rescale the predicted solution Ay to meet
the constraint. We notice that the NN result aligns well with the reference solution, which implies that the solution map of
the linear eigenvalue problem can be trained under solve-training framework. The error between the reference solution and
predicted solution is presented in Fig. 5 (b).

We also compare the performance of different train frameworks, as shown in Table 6. The relative error of fit-training
framework is a little lower than that of solve-training framework with the same number of ReLU layers K =5 and train
samples Nrin = 5000. Such a difference in relative error is mainly due to the different target of loss function. Under fit-
training framework, the loss function is least square between smallest eigenvector and the NN output, which is consistent
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with the relative error defined as (15). However, the loss function under solve-training framework, (14), aims to minimize
the energy, which is inconsistent with the relative error. Hence the difference between the relative errors for different train
frameworks is reasonable. Predicted ground state energy of solve-training framework is lower than that of fit-training frame-
work, which is also due to the different loss function designs. Considering the expensive data preparation cost under the
fit-training framework, i.e., solving (12) for every input external potential {Vi}fi'f‘“, training under solve-training framework
is still desirable.

3.2. Nonlinear Schrédinger equation

This section focuses on training the solution map of the smallest eigenvalue problem of the one-dimensional nonlinear
Schrédinger equation (NLSE) as,

— Au(x) + V(X)u(x) +/3u(x)3 =Fu(x), xeQ=][0,1)

s.t./u(x)zdx=1, and/u(x)dx>0, (17)
Q Q

with periodic boundary condition. The second positivity constraint in (17) can be dropped as in (12) since the nonlinear
term here is cubic. While, comparing to (12), the first constraint in (17) should be handled differently due to the nonlinearity
and will be taken care of in the NN design. This NLSE (17) is also known as Gross-Pitaevskii (GP) equation in describing the
single particle properties of Bose-Eistein condensates. There is an associated Gross-Pitaevskii energy functional,

Eu(] = (VU Vu0o) + @EolV oluo) + 2 (ueoucer’), (18)

for positive V (x) and 8. According to Theorem 2.1 in [32], the minimizer of the GP energy functional (18) is the eigenfunc-
tion of (17) corresponding to the smallest eigenvalue.

In this section, the external potential is generated exactly the same as that in (13), and then shifted such that the
minimum value of V(x) equals to 1 in the observation of positivity assumption on V (x). And 8 here is set to be 10 such
that the problem is in the nonlinear regime. The NLSE (17) is discretized on a uniform grid of 2048 points in the same way
as the linear Schrédinger equation (12) in Section 3.1.

While, the design of loss function for NLSE is more tricky. Thanks to the GP energy functional, we define our loss function
as the discretized version of (18),

Ntrain
(vl An) =" <N9<vf>

i=1

—ANp (Vi) + ViNg (V) + gNe(vf)3>, (19)

which again depends only on {Vi}fi’{"“, A, No.

Through the derivative of (19) with respect to Ny and train rule, minimizing our loss function (19) with respect to 6
results the smallest eigenvector Ny (V;) for each V; if the NN A is able to capture the solution map. However, (19) does
not provide the smallest eigenvalue directly. Instead, we calculate the smallest eigenvalue, i.e., the ground state energy E,

through a Rayleigh-quotient-like form as follows,
No (V)| —ANG (V) + VNG (V) + BN (V)3)
No (V) [Np(V)) ’

Similar as Section 3.1, the loss function cannot be used as a measure of the approximation accuracy of ANy. We calculate
the relative error on another set of Ns random external potential vectors of the same distribution as the train data,
{Wi};\fft. And the relative error is of the form,

E =

(20)

NES
1 QS lui = Ny(W)l

) (21)
Niest = [la; |
where u; is the smallest eigenvector corresponding to W; for i =1, ..., Niest.
We adopt the same 7{-net as in [11] except that the extra normalization layer here is
No
Ng(V):«/2048”T, (22)
6

where ./% is the regular H-net [11] and N is the NN used in this section. This extra layer makes sure the norm of the
NN output equals to /2048, which agrees with the discretized version of the first constraint in (17) and also agrees with
the reference solution generated through the traditional method [2], which is under the same settings as [11]. All training
details are the same as that in Section 3.1.
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Table 7
Relative error of Ny with K =5 trained under solve-training framework for NLSE
given different sizes of train and test data set.

Ntrain Niest Train rel err Test rel err

500 5000 2.52e-2 2.69e—2

1000 5000 3.01e-2 3.18e—-2

5000 5000 4.98e-3 5.28e—3

20000 20000 5.24e—3 5.25e—3
Table 8

Relative error of N trained under solve-training framework for NLSE with different
number of ReLU layers K. The train and test data sets are of size Ny, = 5000 and

Ntest = 5000.
K Nparams Train rel err Test rel err
1 15184 1.64e—1 1.65e—1
3 34236 1.49e—-2 151e-2
5 57156 4.98e—3 5.28e—3
7 83944 3.65e—-3 3.95e—3
250 T T T T 2 0.01 T i i T
200 0.005
150
> > 0
1007 ..
50 -0.005
0 -0.01 * * * *
0 0.2 0.4 0.6 0.8 1
X X
(a) (b)

Fig. 6. (a) An example of external potential V, predicted solution uyy and the corresponding reference solution uef with K =5 and Ny = 5000. (b) Error
between reference solution and predicted solution uef — UnN.

Table 9
Relative error and predicted ground state energy E of Nj trained under solve-
training framework and fit-training framework for NLSE with K =5 and Niqin =

Niest = 5000.
Train rel err Test rel err Train energy Test energy
Fit-training 1.68e—3 2.02e—3 152.43 152.94
Solve-training 4.98e—3 5.28e—3 152.34 152.84

Numerical results

We first compare the performance of Ny trained under solve-training framework for different number of train data set
size Ninin and different number of ReLU layers K through numerical experiments.

Table 7 and Table 8 present results for different Niain, Ntest, and for different number of ReLU layers K respectively.
Similar as in Section 3.1, the test relative error decreases as Nyain and K increases. The results are near optimal with
Ntrain = 5000 and K = 5. Fig. 6 (a) shows an example of the external potential, the predicted and the corresponding refer-
ence solution. The error between the reference solution and predicted solution is presented in Fig. 6 (b). All comments in
Section 3.1 apply here.

We also compare the performance of different train frameworks, as shown in Table 9. Again similar as in Section 3.1, the
relative error of fit-training framework is a little lower than that of solve-training framework with the same number of ReLU
layers K =5 and train samples Ni.,jp = 5000. However, predicted ground state energy of solve-training framework is lower
than that of fit-training framework due to the different choices of loss functions. We observe nonlinear behavior for the
solution near x =0 and the approximation error is even smaller than that in Section 3.1. Hence training the Ay proposed in
[11] under solve-training framework is able to achieve similar accuracy with similar training computational cost but saves
the expensive train data preparation step comparing against training under fit-training framework.

4. Conclusion

We propose a novel training framework named solve-training framework to train NN in representing low dimensional
solution maps of physical models. Since physical models have fixed forward maps usually in the form of PDEs, NN can
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be viewed as the ansatz of the solution map and be trained variationally with unlabeled input functions through a loss
function containing forward maps, i.e., £({f;}, A, Np) for {f;}, A, and Ny being the input functions, forward map, and NN
respectively. Training under solve-training framework is able to avoid the expensive data preparation step, which prepares
labels for input functions through costly traditional solvers, and still captures the solution map adapted to the input data
distribution.

The power of solve-training framework is illustrated through four examples, solving linear and nonlinear elliptic equa-
tions and solving the ground state of linear and nonlinear Schrodinger equations. For linear elliptic equations, we use
H-matrix structure as the ansatz and train via the loss as (3). The trained solution map outperforms the traditional #-
matrix obtained from SVD truncation. For nonlinear elliptic equations, we use one wide fully connected layer using ReLU
activation NN as the ansatz and train via the same loss. Without labeling the input data, solve-training framework is able
to achieve the solution map adaptive to the input distribution whereas the traditional training framework fails in training.
Finally, for both linear and nonlinear Schrodinger equations, we adopt variational representation of the ground state en-
ergy as the loss function and train H-nets [11] under solve-training framework. Lower ground state energy is obtained via
solve-training framework comparing to the traditional fit-training framework.
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Appendix A. H-matrix structure

Assume the mapping between input vector f and output vector u is a matrix A € ]RNZXNZ, where N =2m and admits
the two dimensional H-matrix structure. In order to simplify the description below, we introduce a few handy notations.
The bracket of an integer is adopted to denote the set of nonnegative integers smaller than the given one, i.e. [n] =
{0,1,...,n —1}. Although u and f are always viewed as vectors, they are functions on a two dimensional grid. To avoid
complicated notations, we adopt two input indices for them. Further a fully connected layer (dense layer) with input size
ni and output size ny is denoted as D,'.ff and the ReLU activation function is denoted as o (-). The corresponding #-matrix
neural network structure with rank r can be constructed as follows.

o Level ¢ =1,2,...,L. On level ¢, the indices are split into 2° parts, denoted as Z} = 2!=‘m - i + [2!=m] for i € [2°].
Hence vector u(Z{,Z}) and f(If,If) are of length k = 22L=2¢m2 for any a, b, i, j € [2¢]. Then the operation on level ¢

is defined as,
u(z. 7)) =u(@. 7))+ Y. Do (DL (. 1)) (23)
i.jel2%
ia, j+b

for a,b € [2¢]. When the activation function ¢ is removed from (23), the operation in the summation is a low-rank
factorization of the mapping between grid (l'f,l'f) and (Z{,Z}), which is known as the far-field interaction in -
matrix literature.

o Diagonal level. On this level, the same indices as on level L are used, i.e., IiL =m-i+[m] for i € [2L]. The operation on
this level is defined as,

2
u(Z}. Zf) = u(ZL. 7F) + D f (I8, ZF ) (24)
for a, b € [2L]. This operation is known as the near-field (local) interaction in #-matrix literature.

The description of 7{-matrix is abstract and lacks the domain decomposition intuition behind it. Readers are referred to
[16] for more details about H-matrix.

In Section 2.1, NN-7-matrix refers to the neural network without activation function o whereas NLNN-7{-matrix refers
to the neural network with o. Further, when SVD initialization is used, we first calculate the rank r truncated SVD of the
submatrix of A mapping from (If, If) to (If,I,f) and then initialize Df by the product of left singular vectors and singular

values, and Dj, by the right singular vectors.
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Appendix B. #-net [11] structure

Since H-net is applied to one dimensional problems, we introduce the one dimensional version here. Assume that both
the input vector f and the output vector u are discretized on N points, where N = 2'm. We follow the notations in [11]
and assume that all the relevant tensors will be appropriately reshaped or padded for simplicity. A tensor & of size o x Ny
is connected to a tensor ¢ of size o’ x N}, by a locally connected (LC) network if

(i—-1s+w  «

ti=¢| D D Weeijkejtbei|, i=1,....N,c=1...4d, (25)
j=(i—1)s+1c=1

where w is the kernel window size and s is the stride. Three kinds of LC networks are combined in #-net. Among them,

LCR[¢; Ny, Ny, '] denotes the restriction network where s =w = % and @ =1, LCK[¢; Ny, «, &’, w] denotes the kernel

network where s =1 and N, = Ny, and LCI[¢; Ny, v, '] denotes the interpolation network where s=w =1 and N}, = Ny.
The ReLU activation function is denoted as o (-). The corresponding 7{-net structure with rank r can be constructed as
follows.

e Level £=2,3,..., L. On level ¢, the indices are split into 2¢ parts. The operation on level £ is defined as,
& = LCR[linear; N, 2¢, r1(f)
¢
g =LCK[o; 2°, 1, 20" + 11(&-1), k=1,....K (26)

. ¢ N
u = u + LCI[linear; 2¢, r, ?]@K)

where nl(f) is 2 for £ =2 and 3 for £ > 3.
o Diagonal level. On this level, the same indices as on level L are used. The operation on this level is defined as,

& =LCK[o; 2E, m,m, 20 £ 11(51), k=1,...,K -1

(27)
u = u + LCK[linear; 2}, m, m, 20 + 1](6x_1)

where & = f and nl()ad) =1.

Readers are referred to [11] for the intuition behind the design of H-net structure.
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