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ABSTRACT: An efficient excited state method, named xCDFCI, in the
configuration interaction framework is proposed. xCDFCI extends the unconstrained
nonconvex optimization problem in coordinate descent full configuration interaction
(CDFCI) to a multicolumn version for low-lying excited states computation. The
optimization problem is addressed via a tailored coordinate descent method. In each
iteration, a determinant is selected based on an approximated gradient, and
coefficients of all states associated with the selected determinant are updated. A
deterministic compression is applied to limit memory usage. We test xCDFCI
applied to H2O and N2 molecules under the cc-pVDZ basis set. For both systems,
five low-lying excited states in the same symmetry sector are calculated, together with
the ground state. xCDFCI also produces accurate binding curves of the carbon dimer
in the cc-pVDZ basis with chemical accuracy, where the ground state and four
excited states in the same symmetry sector are benchmarked.

1. INTRODUCTION
Excited state computations are of great importance in
understanding and predicting many phenomena in photo-
chemistry, spectroscopy, and others. Compared to the ground
state computation, excited state computations are more
challenging for wave function ansatz-based methods, including
Hartree−Fock methods,1,2 configuration interaction methods,3

and coupled cluster methods4−6. The excited states in general
have multireference characters, and the wave function ansatzes
in these methods limit the representation of dynamic
correlations. Similarly, it is more challenging to calculate the
excited states than the ground state using density functional
theory (DFT) methods7−11 and time-dependent DFT
methods.12,13

Under the full configuration interaction (FCI) framework, it
is also considered more challenging to calculate the excited
states, but the difficulty is not as severe as the aforementioned
methods. In general, there are two types of challenges for
excited state computations under FCI. First, due to the natural
multireference features of excited states, the discretization basis
set should be of larger sizes than that in ground state
computation and the corresponding FCI matrix size should be
larger. Second, the energy gaps between excited states are, in
general, smaller than those between the ground state and the
first excited state, which would lead to more iterations in
iterative eigensolvers before converging. In this article, we
propose xCDFCI for excited state computation under the FCI
framework. The method is closely related to the recently
developed efficient FCI solver, by three of the authors,
coordinate descent FCI (CDFCI).14

Many modern FCI solvers have been developed for ground
state computation in the past two decades, together with their
extensions to excited state computations. Density matrix
renormalization group (DMRG)15−18 uses matrix product
state as the wave function ansatz and applies an iterative
sweeping procedure as an eigensolver. Various strategies19,20

are proposed to address excited states one by one. FCI
quantum Monte Carlo (FCIQMC) and its variants21−23 use
quantum Monte Carlo walker idea to reduce the computa-
tional cost. In its extension to excited state computations,24

several groups of walkers are used to represent excited states,
and an orthogonal projection is introduced between iterations
to prevent groups from collapsing into the ground state.
Selected-CI is a group of FCI solvers based on sequential
configuration selections, including adaptive configuration
interaction (ACI),25 heat-bath configuration interaction
(HCI),26−28 and adaptive sampling configuration interaction
(ASCI) .29 Extending selected-CI methods to excited state
computations is straightforward. After a small modification of
the selection criteria,29−31 the excited states are computed by
solving the low-lying eigenstates of the reduced Hamiltonian
matrix. FCI fast random iteration (FCI-FRI)32 adopts a bias-
free sampling procedure to compress the wave function under
the power method framework. In the excited state version of
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FCI-FRI,33 the iterative method is a multicolumn version
power method, where the normalization is carried out every
iteration and the orthogonalization is carried out every few
iterations. Recent review papers34,35 summarize other FCI-
related methods as well. Coordinate descent FCI14 reformu-
lates the eigenvalue problem as an unconstrained optimization
problem, which is the single-column version of the
optimization problem used in this paper (4). Then a
coordinate-descent method is applied to address the
optimization problem, where the coordinates are selected
based on the magnitude of the gradient vector and the stepsize
is calculated from an exact linesearch. Importantly, a tailored
compression strategy is applied to limit the growth of nonzeros
in the state vector and hence limit memory usage. The
compression is not applied to the state vector c directly.
Instead, it is applied to b = Hc for H to be the Hamiltonian
matrix to truncate small updates that increase the memory
cost. The compression in Coordinate descent FCI is carefully
designed so that the Rayleigh quotient could be accurately
evaluated and the second-order energy estimation becomes
available.

Moreover, FCI problems have also attracted attention from
the numerical linear algebra community in recent years. Many
algorithms and analyses36−42 influence the developments
above. Other works attempt to incorporate machine learning
and reinforcement learning technique to accelerate the FCI
calculation.43,44

In this paper, we extend CDFCI to excited state
computations and name the method as xCDFCI. The
unconstrained optimization problem in CDFCI is extended
to a multicolumn version to accommodate low-lying excited
states. The coordinate-descent method used to optimize the
objective function is replaced by a row-block descent scheme
in xCDFCI and the compression is still carried out in an
entrywise way. The multicolumn vector in xCDFCI does not
converge to the ground state and low-lying excited states
directly. Instead, it converges to a subspace formed by the
ground and low-lying excited states. The eigenvectors can be
recovered by a postprocessing procedure. Most importantly, all
desired features of the original CDFCI are preserved.
Symmetries, including time-reversal symmetry and angular
momentum symmetry, are implemented to reduce both
computational and memory costs when the computation is
restricted to a symmetry sector. Finally, numerical results on
H2O, N2 are included to demonstrate the efficiency of xCDFCI
for excited state computations. We also report the binding
curve of C2 obtained using xCDFCI for singlet.

The rest of the article is organized as follows. Section 2
introduces xCDFCI for excited state computations and other
related discussions. Section 3 provides numerical examples of
xCDFCI. The paper is concluded in Section 4.

2. XCDFCI
We introduce xCDFCI in this section and discuss some of the
implementation details. Notations are kept the same as that in
Wang et al.14 as much as possible. In the following, we first
propose the unconstrained optimization problem for excited
state computations, then explain the xCDFCI algorithm step-
by-step, and finally discuss its implementation details:
initialization, stopping criteria, and symmetry.
2.1. Optimization Formula for Excited State Compu-

tations. Given a spin−orbital set {χp}, we denote the creation
and annihilation operator as ap̂† and aq̂ respectively. The

Hamiltonian operator, under the second quantization, is given
by

H t a a v a a a a
p q

pq p q
p r q s

prqs p r s q
, , , ,

= +† † †

(1)

where tpq and vprqs are one-body and two-body integrals,
respectively. The K low-lying states of the time-independent
Schrödinger equation can be obtained by solving

H Ek k k| = | (2)

for k = 0, 1, ..., K − 1, where E0 is the smallest eigenvalue
associated with the ground state |Φ0⟩, E1 is the second smallest
eigenvalue associated with the first excited state |Φ1⟩, and so
on, k k

K
0
1{| } = are orthogonal to each other.a Throughout this

paper, we assume that all E0, E1, ..., EK−1 are negative. This
assumption can be made without loss of generality, as
otherwise we can shift the Hamiltonian by a constant. We
further denote the Slater determinants as Di i

N
1{| }= for N = NFCI

being the size of the entire electron-preserving configuration
space. Using Di i

N
1{| }= as the basis, the ground state and excited

states are discretized as

V Dk
i

i k i,| = |
(3)

and coefficients Vi,k forms a matrix V of size N × K satisfying
the orthonormality constraint, VTV = I for I being an identity
matrix of size K × K. The Hamiltonian operator is discretized
as the Hamiltonian matrix H with its (i, j)-th entry being Hij =
⟨Di|Ĥ|Dj⟩. After the discretization, solving (2) is reduced to
solving for the low-lying K eigenpairs of H, where the major
computational difficulty comes from the factorial scaling of
NFCI with respect to the number of spin−orbitals and
electrons.

Now we extend the unconstrained optimization problem in
CDFCI14 to excited states. The optimization problem is
extended as

f Cmin ( )
C N K× (4)

for

f C H CC( ) T
F
2= + (5)

where C is a matrix of size N by K. When K = 1, (4) is the
same as the optimization problem in Wang et al.14 The
gradient of f(C) admits

G f HC C C C4 4 ( )T= = + (6)

As has been analyzed in Gao et al.,40 the unconstrained
optimization problem (4) has many stationary points, but has
no spurious local minima. All local minima are global minima
of the form

V Q (7)

where K K× is a diagonal matrix with its diagonal entries
being E0, E1, ..., EK−1, V N K× is the corresponding
eigenvector matrix as defined in (3), and Q K K× is an
arbitrary orthogonal matrix such that QTQ = QQT = I.

Generally, gradient-based first-order methods, including the
coordinate descent method, avoid saddle points and converge
to a global minimum almost surely.45 We remark that the
minimizers of (4) give the eigenspace only due to the arbitrary
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Q in (7). To get eigenvectors, we need a postprocessing step to
retrieve eigenvectors when needed. The postprocessing part is
computationally cheap and costs no additional memory.
2.2. Algorithm. The algorithm we propose for excited state

computations is a coordinate descent method applying to (4),
where some specifics are designed to fully incorporate the
properties of FCI problems. We introduce our algorithm step
by step. Throughout the algorithm, two matrices C and B are
kept: C is the iterator targeting (7) and B is used to track HC,
i.e., B ≈ HC. Further, we use superscript in the parentheses to
denote iteration index, e.g., C( ) denotes the iterator at the -th
iteration. Colon notation is used to denote the entire row or
column, e.g., Ci , :

( ) denotes the i-th row of ( ).
The xCDFCI algorithm is composed of an iterative part with

5 steps and a postprocessing step. At each iteration, the first
step selects a determinant with maximum absolute value in an
approximated gradient (4). The second step then conducts a
linesearch and updates C, where a fourth-order polynomial is
minimized to determine the optimal stepsize. In the third and
fourth steps, the corresponding update to B is calculated with
compression and a row of B is recalculated to improve
accuracy with minimal additional cost. In the last step of the
iterative part, energies are estimated via a generalized Rayleigh
quotient procedure. When the iteration converges according to
some stopping criteria, a postprocessing step could be carried
out to obtain the ground state vector and excited state vectors.
In the following, we explain each step of xCDFCI in detail.

2.2.1. Step 1: Determinant Select. This step aims to select a
determinant for the update, which potentially leads to the
greatest decay in f(C). The determinant selection strategy is as
follows

i B C C Carg max 4 4 ( )
j i

k K

j k j k
( 1)

( )

0

,
( )

,:
( ) ( ) T ( )

:,
H

( )

= | + [ ] |+

< (8)

where i( ) is the argument j achieving the maximum value. Here
i( )H
( ) denotes the set of determinants connected to i( ) via H,

i.e., for any j i( )H
( ) , Hi j( ) is nonzero and for any

j i( )H
( ) , Hi j( ) is zero. Due to the existence of zeros in

one- and two-body integrals, i( )H
( ) is a subset of the single

and double excitations from the i( ) determinant. The intuition
behind (8) is related to the gradient of f(C) (6). Comparing
(8) and (6), we notice that the determinant is selected to be
the row containing the absolutely largest gradient entry so that
it potentially leads to the greatest reduction of the objective
function.

2.2.2. Step 2: Coefficient Update. Given a selected
determinant i( 1)+ , we seek the best stepsize τ and move the
i( 1)+ -th row of the coefficient matrix C( ) along the gradient
direction with the stepsize. The best stepsize τ is achieved via
solving

f C e Garg min ( )i i
( )

,:( 1) ( 1)= + + +

(9)

where ei( 1)+ is a vector with i( 1)+ -th entry being one and zero
otherwise, and

G B C C C4 4 ( )i i i, : ( 1),:
( )

( 1),:
( ) ( ) T ( )

( 1) = ++ ++ (10)

is the i( 1)+ -th row of the approximated gradient (6). Solving
(9) is actually minimizing a fourth-order polynomial of τ̂, and
all polynomial coefficients can be evaluated in O(K2)
operations (details can be found in Appendix A). Once the
stepsize τ is determined, we update C( ) as follows

C
C G i i

C

if

otherwise
i

i i

i

, :
( 1) ,:

( )
,:

( 1)

,:
( )

l
m
oooo
n
oooo

=
+ =

+
+

(11)

2.2.3. Step 3: Coefficient Compression. Throughout the
algorithm, we keep all entries of C. While, for B = HC without
compression, the number of nonzeros in HC is much larger
than that in C. We cannot afford to store HC in memory.
Hence, we compress the representation of B.

We use supp(B) to denote the set of determinants
containing at least one nonzero coefficient, i .e. ,

B i Bsupp( ) : max 0k i k,= { | | > }. Then we update and compress

B( ) as follows, for i = i( 1)+

B

B H G j B

H G
j B

H G

if supp( )

if supp( ) and

max

j

j j i i

j i i
k j i i k

, :
( 1)

,:
( )

, ,:
( )

, ,:

( )

, ,

l

m
oooooooo

n

oooooooo
=

+

| | >

+

(12)

where ε is the predefined compression threshold. Equation 12
indicates that for all pre-existing determinants in B, the
coefficients are updated accurately; while for new determi-
nants, the coefficients are added only if they contain an
important update. Obviously, the compression limits the
growth of nonzeros in B, and thus the data storage cost.

Now we explain the indirect connection to compression of
C. According to (8), when a determinant is not in supp B( )( ) ,
the corresponding gradient is zero, hence the determinant will
not be selected, which in turn limits the growth of nonzeros in
C. Therefore, all compressions are explicitly applied to B only,
indirectly limiting the growth of nonzeros in C.

2.2.4. Step 4: Coefficient Recalculation. In (12), we already
compute all nonzero entries in the i( 1)+ -th column of H. Now,
we reused these results to refine coefficients in B. The i( 1)+ -th
row in B is recalculated as follows

B H C H Ci
j i

i j j
j i

j i j( 1),:
( 1)

( )
, ,:

( 1)

( )
, ,:

( 1)

H H
( 1)

( 1)

( 1)

( 1)= =+
+ + +

+

+

+

+

(13)

where the second equality is due to the symmetry property of
the Hamiltonian.b This recalculation of Bi( 1),:

( 1)
+
+ is of essential

importance when the i( 1)+ -th determinant is added to C( ) for
the first time. It removes potential errors made by
compressions from earlier iterations and, together with (12),
keeps B H Ci i, : ,:( 1) ( 1)+ + for all later iterations. From a
numerical analysis viewpoint, the recalculation also preserves
the numerical accuracy. Since the number of iterations in
xCDFCI could easily go beyond 108 to 1010, the accumulation
of the numerical error caused by the finite precision
computations in the worst case grows linearly with respect to
the number of operations and would destroy the accuracy of
e n e r g i e s . R e g u l a r l y r e c a l c u l a t i n g Bi( 1),:

( 1)
+
+ k e e p s

B H Ci i, : ,:( 1) ( 1)+ + at a low level of numerical error.
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2.2.5. Step 5: Energy Estimation. Given a coefficient matrix
C( 1)+ , the energy estimation is conducted through a
generalized Rayleigh quotient of second-order accuracy,
which solves a generalized eigenvalue problem of matrix pair

C HC C C(( ) , ( ) )( 1) T ( 1) ( 1) T ( 1)+ + + + , i.e.,

C HC U C C U(( ) ) (( ) )( 1) T ( 1) ( 1) T ( 1)=+ + + + (14)

for U being eigenvectors and Γ being the eigenvalue matrix.c A
detailed discussion on the accuracy of the Rayleigh quotient
refers to Appendix B. Since only the coefficients of a
determinant are updated, both matrices can be updated
accordingly

C C C C C G

G C G G

( ) ( ) (( )

)

i i

i i i i

( 1) T ( 1) ( ) T ( )
( 1),:
( ) T

,:

( 1),:
T

( 1),:
( ) 2

( 1),:
T

,:

( 1)

( 1)

= +

+ +

+ +
+

+ + +

+

+

(15)

and

C HC C HC B G

G B

H G G

( ) ( ) (( )

)

i i

i i

i i i i

( 1) T ( 1) ( ) T ( )
( 1),:
( 1) T

,:

( 1),:
T

( 1),:
( 1)

2
( 1),:
T

,:

( 1)

( 1) ( 1) ( 1)

= +

+

+ +
+
+

+ +
+

+

+

+ + + (16)

Since Bi( 1),:
( 1)

+
+ was recalculated in the previous step, both

matrices are numerically accurate and not affected by our
compression. The updated matrix C C( )( 1) T ( 1)+ + is also
involved and reused in the gradient computation of the next
iteration. After the energy estimation, we check the stopping
criteria. If the criteria are satisfied, we move on to
postprocessing; otherwise, we go back to the first step.

2.2.6. Postprocessing. When the algorithm converges, the
energies of low-lying excited states are already available in Γ. If
excited states are needed for the down stream tasks, e.g.,
reduced density matrix computations, the coefficient matrix C
needs to be transformed back to eigenvectors V and the
transformation is as simple as

V CU (17)

where U is the eigenvector matrix in (14).
2.3. Implementation. We now discuss some implementa-

tion details, including the data structures of C and B, the
stopping criteria, and the symmetry of molecular systems in the
following.

2.3.1. Data Structure. In Wang et al.,14 several data
structures have been implemented and discussed, including the
hash table, black-red tree, and so forth. Among these data
structures, the hash table is the one achieving the best
computational performance for CDFCI. Thus, for xCDFCI, we
also adopt hash tables as our overall data structure. For the
single-threaded version of our implementation, a Robin Hood
hash table is adopted,46 whereas for the multithreaded version,
a Cuckoo hash table is adopted.47,48 In both hash tables, the
keys are the binary representations of the determinants. Given
a key corresponding to a determinant with index i, the bucket
of the hash table is composed of two vectors, Bi,: and Ci,:. Based
on our tests of CDFCI, the hash table access costs nearly half
of the runtime. Hence, in designing the algorithm and data
structure of xCDFCI, we balance the number of hash table
accesses and the number of entry updates. For each iteration in
xCDFCI, where the number of hash table accesses is the

number of nonzeros in the column of H, we update the entire
row of B and C, i.e., update both ground state and excited
states of the selected determinant. In xCDFCI, the hash table
access costs less than half of the runtime, and the per-iteration
cost of xCDFCI is less than K times that of CDFCI. The
drawback of our data structure implementation is that it
ignores the sparsity across states. For example, consider the
scenario that for a given determinant, the value of an excited
state is noncompressible while values of other states are all
compressible. Our implementation would treat the values of all
states as noncompressible and allocate memory for them. In
the trade-off of hash table access cost and memory efficiency,
we lean against the former in the implementation of xCDFCI.

2.3.2. Stopping Criteria. The stopping criteria for
coordinate descent methods are usually more complicated
than those for general gradient descent methods. In gradient
descent methods, the norm of the gradient is often used as a
stopping criterion. For nonstiff problems, when the norm is
sufficiently small, we are confident that the iteration is close to
a first-order stationery point. However, for coordinate descent
methods, we often cannot afford to check through the entire
gradient vector, as in xCDFCI. It is also risky to stop when the
entry update Gi ,: is small. Hence, in our implementation, we
adopt accumulated entry updates as the stopping criterion, i.e.,

Gtol
n

n
i

1

( )
,:( )=

= (18)

where n is the current iteration index, β is a discounting factor
strictly smaller than one, and ( ) is the best stepsize at -th
iteration. The accumulated entry updates could be evaluated
iteratively

Gtol toln
i

( )
,: 1n( )= + · (19)

and only a single tol needs to be kept in memory. Throughout,
discounting factor β is left as a hyperparameter. Given a β, we
could calculate all discounting coefficients in (18) and estimate
the number of entry updates whose coefficient is greater than
0.1. Specifically, there are about 1

log10
entry updates with

coefficients greater than 0.1. The suggested value for β would
be in the range of [0.99, 0.999] such that about a few hundred
to a few thousand entry updates are accumulated with
coefficients of the same ordering.

3. NUMERICAL RESULTS
In this section, we perform a sequence of numerical
experiments for H2O, C2, and N2 under the cc-pVDZ basis
set. In all experiments, the one-body and two-body integrals
are calculated by Psi4.49 The FCI excited states are calculated
by our homebrewed package CDFCI.50 All energies are
reported in Hartree (Ha).
3.1. H2O Excited States. This section calculates the

excited states of H2O at the equilibrium geometry. The OH
bonds are of length 0.9751 Å, and the HOH bond angle is
110.565°. The maximum memory for the CDFCI calculation is
480 GB and the compression tolerance is 0 (no compression).
With the cc-pVDZ basis set, there are 10 electrons and 24
orbitals involved in the calculation. Throughout, the reference
energy of the ground state is −76.2418601 Ha, and reference
energies of excited states are numerical results at one hundred
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million iterations of xCDFCI. Reference values are attached in
Appendix C.

From Table 1 and Figure 1, we shall see that the energy
error drops quickly to the level of 10−4 mHa accuracy at the

beginning. It then has a slower but steady decay. According to
Figure 1, in general, energies associated with lower excited
states are of better accuracy. The only exception for H2O is the
energy associated with the third excited state, which achieves
better accuracy than the first and second excited state energies.
From Table 1, we find that each state can quickly converge to
chemical accuracy. After a burn-in stage (first few thousand
iterations), the runtime is linear with respect to the number of
iterations. Hence, if Figure 1 is redone for energy errors against
the runtime, the curves would behave similarly, and the decays
remain linear against the runtime after the burn-in stage.

3.2. N2 Excited States. This section calculates the excited
states of N2 at the equilibrium geometry. Nitrogen dimer N2 is
more challenging than H2O because the FCI problem size is
much larger, so we use thresholds of 10−4 and 10−5 for
compression. The N2 molecule has a bond length of 1.12079.
The maximum memory in this section is limited to 960 GB.
With the cc-pVDZ basis set, there are 14 electrons and 28
orbitals. The results of N2 are reported in Tables 2, 3, and
Figure 2. Throughout, the reference energy of the ground state
is −109.28210 Ha, and reference energies of excited states are
numerical results of xCDFCI at one hundred million iterations.
Reference values are attached in Appendix C.

The convergence trend of N2 is similar to that of H2O except
that the convergence rate in N2 is slower. Similarly, after the
first million iterations, xCDFCI converges linearly, and the
convergence rates are quite stable for both the ground state
and excited states. Therefore, we conclude that xCDFCI is
stable and efficient for various chemistry systems with different
correlation strengths. For N2, xCDFCI takes about ten
thousand seconds to achieve chemical accuracy. Convergence
rates for all states are approximately the same. Unlike H2O,
where the runtime scales linearly with respect to the number of
iterations, for N2, the runtime scales sublinearly. This is mainly
due to the compression. When the compression criterion is
activated, the computational cost for compressed determinants
is far less than that of uncompressed ones. Comparing Tables 1
and 3, we notice that the runtime of N2 is smaller than that of
H2O. Although the computational system of N2 is larger, the
compression with tolerance 10−5 reduces a lot of computations
and the runtime is also reduced. Comparing Tables 2 and 3, we
find that the accuracies for both ground and excited state
energies are at the same level of the truncation threshold.
When a smaller truncation threshold is used, the runtime is
longer whereas the accuracies are consistently improved.
Therefore, the compression technique is efficient and reliable.
3.3. Carbon Dimer Binding Curves. In this section, we

test C2 with bond lengths from 1 to 2.6. We computed five

Table 1. Convergence of Energy of H2O
a

energy (Ha) number of Iterations

104 107 2 × 107 5 × 107

ground state −76.2312241 −76.2418569 −76.2418594 −76.2418600
first excited state −75.8803222 −75.8943336 −75.8943364 −75.8943371
second excited state −75.8452281 −75.8604822 −75.8604851 −75.8604858
third excited state −75.6550559 −75.6731155 −75.6731187 −75.6731195
fourth excited state −75.5669476 −75.5846740 −75.5846775 −75.5846783
fifth excited state −75.3466894 −75.4844768 −75.4844824 −75.4844836
wall time (sec) 67.14 19414.28 38477.38 90759.04

aItalics indicate inaccurate digits.

Figure 1. Convergence of energies of six low-lying excited states of
H2O vs the number of iterations.

Table 2. Convergence of Energy of N2 with a Threshold 10−4

energy (Ha) number of iterations

105 106 107 5 × 107

ground state −109.26880 −109.28079 −109.28202 −109.28205
first excited state −108.71630 −108.73197 −108.73388 −108.73393
second excited state −108.64476 −108.66052 −108.66288 −108.66294
third excited state −108.63841 −108.65936 −108.66081 −108.66085
fourth excited state −108.60955 −108.62886 −108.63105 −108.63110
fifth excited state −108.58148 −108.60142 −108.60365 −108.60372
wall time (sec) 227.8 1012.46 6671.83 31974.3
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low-lying energies of the singlet of C2. The symmetry in the
basis set is implemented via the Hartree−Fock calculation, i.e.,
in the Psi4 calculation. More precisely, the singlet calculation is
realized by setting the molecule as a singlet and its irreducible
representations. The maximum memory in this section is 120
GB and the tolerance is 0. With the cc-pVDZ basis set, there
are 12 electrons and 56 orbitals. We perform 1 million
iterations for xCDFCI. In all configurations, the accuracies for
all states are at the level of chemical accuracy.

The energies of five low-lying states of C2 in the singlet (1Σg)
are shown in Table 4. Binding curves are depicted in Figure 3.
In general, we observe that the binding curves for lower energy

states are smoother, as shown in Figure 3. We find a lot of
crossover points. Each crossover point corresponds to a
configuration whose energies are degenerate. Lower energy
binding curves have fewer crossover points. The binding curve
for the fourth excited state has many crossover points with
binding curves of higher excited states though they are not
calculated.

4. CONCLUSIONS AND DISCUSSION
We proposed xCDFCI in this paper as an efficient low-lying
excited-state solver under the FCI framework. xCDFCI adopts
an extension of the objective function in the CDFCI method.

Table 3. Convergence of Energy of N2 with Threshold 10−5

energy (Ha) number of iterations

105 106 107 5 × 107

ground state −109.26836 −109.28077 −109.28204 −109.28215
first excited state −108.71546 −108.73196 −108.73390 −108.73407
second excited state −108.64376 −108.66050 −108.66291 −108.66311
third excited state −108.63613 −108.65935 −108.66083 −108.66096
fourth excited state −108.60848 −108.62885 −108.63110 −108.63130
fifth excited state −108.58040 −108.60141 −108.60370 −108.60392
wall time (sec) 315.75 2140.65 15129.69 57403.06

Figure 2. Convergence of energies of six low-lying excited states of N2
against the number of iterations. The threshold is 10−5.

Table 4. Energy of Five Low-Lying States of C2 in Singlet

energy of five low-lying states (Ha)

R (Å) zeroth first second third fourth

1.0 −75.55231 −75.37074 −75.34005 −75.25824 −75.24635
1.1 −75.67528 −75.52584 −75.52314 −75.42099 −75.40454
1.2 −75.7246 −75.6188 −75.61144 −75.51174 −75.46344
1.3 −75.73152 −75.66195 −75.65091 −75.55151 −75.4995
1.4 −75.71569 −75.67459 −75.66213 −75.56135 −75.5052
1.5 −75.68951 −75.67034 −75.65703 −75.55471 −75.49432
1.6 −75.66102 −75.65712 −75.64203 −75.53995 −75.47353
1.7 −75.64014 −75.63676 −75.62022 −75.52375 −75.4532
1.8 −75.62201 −75.6169 −75.59619 −75.5117 −75.45362
1.9 −75.60453 −75.59944 −75.57506 −75.50693 −75.44587
2.2 −75.56245 −75.55941 −75.53746 −75.51137 −75.46051
2.5 −75.53929 −75.53814 −75.52593 −75.51654 −75.49545

Figure 3. Low-lying potential energy surfaces of the carbon dimer in
the singlet the cc-pVDZ basis.
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More precisely, xCDFCI extends the single-column version
(ground state) to a multicolumn version (low-lying excited
states) and leads to (4). Then a tailored coordinate descent
method is applied to address (4). xCDFCI first selected a
determinant with the largest entry in magnitude in the
approximated gradient, and then the selected row of the
iteration variable C is updated, i.e., the coefficients of a
determinant for all states are updated. To avoid memory
overflow, a hard-thresholding type compression is applied to B
≈ HC for H being the Hamiltonian matrix, which in turn limits
the growth of nonzeros in C. Finally, we carefully maintain the
double precision accuracy of CTC and CTHC = CTB, and we
estimate the eigenvalues through a generalized Rayleigh
quotient procedure. Based on results from the theory of
numerical analysis,51 the ground state and low-lying excited
states are of the first order accuracy, whereas the ground state
energy and excited state energies are of the second order
accuracy. In summary, xCDFCI extends CDFCI to calculate
low-lying excited states and inherits almost all desired
properties of CDFCI. Numerical results on various chemistry
systems demonstrate the efficiency of xCDFCI.

Extending the CDFCI to higher-lying excited states is
feasible but more challenging. Memory cost is a major concern.
When more excited states are computed using CDFCI, the
number of columns in C and B is increased. At the same time,
the number of nonzero rows in C and B also needs to be
increased to incorporate the sparsity of higher-lying excited
states. Hence, the memory increases faster than linear scaling
with respect to the number of excited states. Besides the
memory cost, the degeneracy in higher-lying excited states
would also cause trouble if K is not properly chosen.

There are a few promising future directions. First, xCDFCI
has not fully exploited the sparsity of the low-lying excited
states. Due to the nature of (4), the objective function is
rotation invariant, i.e., the objective function remains the same
for C and CQ with Q being an orthogonal matrix. Hence,
xCDFCI can converge to the eigenspace formed by the desired
ground state and low-lying excited states. While it is not
guaranteed to converge to the sparse eigenvectors directly.
Some recent works40−42 provide promising paths to address
the sparsity issue. Second, the basis sets remain the Hartree−
Fock molecular orbitals. Applying orbital optimization
methods like CASSCF52 or OptOrbFCI53 with state-averaged
idea together with xCDFCI would be a direct extension.
Exploring various orbital rotations for different excited states
coupled with xCDFCI would be an interesting future direction.
Lastly, we did not fully incorporate the compressed evaluation
of the Hamiltonian matrix and other perturbative approx-
imations as in other FCI excited state work,30,33 which could
be combined with xCDFCI to further accelerate the proposed
method.

■ APPENDIX A

Optimal Stepsize via Linesearch
The optimal stepsize τ could be obtained by solving (9). The
function f C e G( )i i

( )
,:( 1) ( 1)+ + + could be rewritten as a

fourth-order polynomial of τ̂. For the sake of notation, we omit
all superscripts of the iteration index and obtain

f C e G c c c c c( )i i ,: 0 1 2
2

3
3

4
4+ = + + + + (20)

where the polynomial coefficients are

c f C( )0 = (21)

c Gi1 ,:
2= (22)

c H G G C C G C G

C G

2 2 ( ) 2( ) 2i i i i i i i

i i

2 , ,:
2

,:
T

,:
T

,: ,:
T 2

,:
2

,:
2

= + + +

(23)

c C G G4( )i i i3 ,: ,:
T

,:
2= (24)

c Gi4 ,:
4= (25)

Notice that coefficient c2 could be evaluated in O(K2)
operations, and coefficient c1, c3 and c4 could be evaluated in
O(K) operations, where K is the number of states and length of
all row vectors.

Finding the minimum of the fourth-order polynomial could
be addressed via solving a third-order polynomial

c c c c2 3 4 01 2 3
2

4
3+ + + = (26)

There are three scenarios in solving (26): (1) one root; (2)
two roots; and (3) three roots. When there is only one root, it
achieves the minimum of (20). When there are two roots, one
of which is of multiplicity, it achieves the minimum. When
there are three roots, the one farther from the middle one
achieves the minimum. Through the above procedure, the
linesearch problem (9) could be addressed efficiently in O(K2)
operations.

■ APPENDIX B

Rayleigh Quotient
Let H be a symmetric matrix of the size N. The eigenvalues of
H are denoted as E0 < E1 < ··· < EN−1. And the associated
eigenvectors are V0, V1, ..., VN−1. For simplicity, we assume that
H is a gapped matrix. Given a vector x N , the Rayleigh
quotient is defined as

r x x Hx
x x

( )
T

T=
(27)

Obviously, the Rayleigh quotient is x scale-invariant, i.e.,
r(x) = r(αx) for any nonzero scaler α. Hence, we could focus
on a normalized vector x such that ∥x∥ = 1.

An interesting and useful property of the Rayleigh quotient
is that r(x) is a quadratically accurate estimate of an eigenvalue.
More precisely, let Vj be one of the eigenvectors of H. We
consider the case that x is sufficiently close to Vj, i.e., ∥x − Vj∥
= O(ϵ) for ϵ small. Then an important consequence of the
Rayleigh quotient is that54

r x r V O E O( ) ( ) ( ) ( )j j
2 2= + = + (28)

This is the second-order accuracy to which we are referring
in the main paper.

In this paper, instead of the Rayleigh quotient of a single
vector, we adopt a generalized Rayleigh quotient (or block
Rayleigh quotient), as in (14). The eigenvalue estimation is
performed via solving a generalized eigenvalue problem. We
could view the generalized eigenvalue problem step as a
normalization step so that each column in CU as in (17) is a
normalized and aligned estimation of an eigenvector of H.
Then the quadratically accurate property of the Rayleigh
quotient remains valid in the generalized Rayleigh quotient
case.
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■ APPENDIX C

Reference Energies
The reference energies for H2O and N2 under the cc-pVDZ
basis are reported in Table 5.
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■ ADDITIONAL NOTES
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