Massively parallel *ab* initio plasma simulations using the particle-in-cell method

Self-generated

magnetic-field

E. Paulo Alves

SLAC National Accelerator Laboratory High Energy Density Science Division

epalves@slac.stanford.edu

Hollow dielectric channel

> relativistic e-e+ beam

Massively parallel *ab* initio plasma simulations using the particle-in-cell method

Self-generated

magnetic-field

E. Paulo Alves

SLAC National Accelerator Laboratory High Energy Density Science Division

epalves@slac.stanford.edu

Hollow dielectric channel

> relativistic e-e+ beam

Acknowledgements

Work in collaboration with: *** F. Fiuza**, S. Glenzer (SLAC/Stanford) *W. Mori (UCLA) * T. Grismayer, R.A. Fonseca, L. O. Silva (IST, Portugal)

* Juqueen, SuperMUC (PRACE) * Sequoia, Vulcan (LLNL) * Mira (ANL)

HPC resources:

Financial support from the DOE FES and SLAC LDRD

Iaboratory plasmas Iaboratory plasmas

The Particle-in-Cell (PIC) methodology to model plasmas

• Examples of applications in astrophysical and laboratory plasmas

Conclusions and perspectives

Plasmas in astrophysics and in the laboratory

Microscopic plasma processes underly fundamental questions in space/astrophysics

Hubble Space Telescope, NASA

http://physicsworld.com

https://science.nasa.gov

Achieving controlled fusion energy in the lab

Inertial confinement fusion

Lawrence Livermore National Laboratory E. P. Alves | 3rd December 2016 | BASCD@Stanford | Stanford, CA

Overview of simulation methodologies in plasma physics

Compute the motion of a collection of charged particles, interacting with each other and with external fields

The particle-in-cell methodology

Particle-particle simulations

(# operations $\propto N^2$)

Particle-Mesh simulations
 (# operations ~ N)

- Fields + densities
- Long range interactions

 Additional MC binary Coulomb collision module can model short range interactions

* Dawson, Buneman, 1960's; Birdsall and Langdon, Plasma Phys. via Comp. Simulation (1985)

The particle-in-cell methodology

Particle-particle simulations

(# operations $\propto N^2$)

Particle-Mesh simulations
 (# operations ~ N)

- Fields + densities
- Long range interactions

 Additional MC binary Coulomb collision module can model short range interactions

* Dawson, Buneman, 1960's; Birdsall and Langdon, Plasma Phys. via Comp. Simulation (1985)

Particle-in-cell methodology*

The particle-in-cell methodology

Particle-particle simulations

(# operations \propto N²)

Particle-Mesh simulations
 (# operations ~ N)

- Fields + densities
- Long range interactions

 Additional MC binary Coulomb collision module can model short range interactions

MC binary Coulomb collisions*

OSIRIS: a state-of-the-art PIC code for the modeling of plasmas

TÉCNICO LISBOA

UCLA

osiris framework

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code Visualization and Data Analysis Infrastructure
- Developed by the osiris.consortium

 \Rightarrow UCLA + IST

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt Frank Tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

code features

- Scalability to ~ 1.6 M cores
- SIMD hardware optimized
- Parallel I/O
- Dynamic Load Balancing
- QED module
- Particle merging
- GPGPU support
 - Xeon Phi support

Efficient strong scaling to 1.6 million cores

F. Fiúza et al. (2013)

LLNL Sequoia IBM BlueGene/Q #2 - TOP500 Nov/12 1572864 cores R_{max} 16.3 PFlop/s

Pushing the limits of PIC simulations

- Reduced physics algorithms for specific physical regimes

PIC codes drive plasma physics research in a broad range of areas

Amplify magnetic fields & accelerate cosmic rays

Compress & heat fusion fuel

Accelerate particles in compact systems

How do extreme astrophysical systems shine?

Supernovae explosion

http://physicsworld.com

Plasma instabilities can convert the enormous kinetic energy of these plasma outflows into E/B-fields, energetic particles and radiation

Relativistic plasma jets

web.ct.astro.it

Shear flow configurations are pervasive in nature

Hydrodynamic shear flows

http://wikipedia.org

Magnetohydrodynamic (MHD) shear flows

W. Zhang et al., ApJL (2009)

Unmagnetized collisionless shear flows

E. P. Alves et al., ApJL (2012)

Self-generation of electric & magnetic fields via the ESKHI

Self-generation of electric & magnetic fields via the ESKHI

Radiation emission & particle acceleration in instability-generated fields

M. Bussmann et al., ICHPCNSA (2013), E.P.Alves et al., NJP 16, 035007 (2014)

Exploring microphysics of relativistic collisionless shear flows in the laboratory

E. P. Alves et al. PPCF 58, 014025 (2015)

Intense lasers drive lab exploration of extreme plasma phenomena

E.C. Harding et al., Phys. Rev. Lett. (2009)

B-fields via Weibel CH₂ disk target (4 kJ, 1 ns) instability 8 mm Protons TCC DHe3 Capsule (9 kJ, 1 ns) Proton image 10 mm CH₂ 3.2 ns 4.2 ns 5.2 ns 1. abs & there a **Experimental data** NX ANK INTEL VAN AND **PIC** simulation

C. Huntington, F. Fiuza, S. Ross et al. Nat. Phys. (2015)

Plasma-based laser amplifiers promise next-generation laser energy-densities

 $I_{seed} = I_{pump} = 10^{16} W/cm^2$ $n_0 = 0.3 n_{cr}$

E.P.Alves et al., arXiv:1311.2034 (2014)

3M core hours

 $I_{seed} = I_{pump} = 10^{16} W/cm^2$ $n_0 = 0.3 n_{cr}$

> Efficient pump depletion

E.P.Alves et al., arXiv:1311.2034 (2014)

 $I_{seed} = I_{pump} = 10^{16} W/cm^2$ $n_0 = 0.3 n_{cr}$

E.P.Alves et al., arXiv:1311.2034 (2014)

Filamentation of the transverse envelope

> ~10⁸ particles ~I0⁴ time steps **3M core hours**

 $I_{seed} = I_{pump} = 10^{16} W/cm^2$ $n_0 = 0.3 n_{cr}$

E.P.Alves et al., arXiv:1311.2034 (2014)

 $I_{seed} = I_{pump} = 10^{16} W/cm^2$ $n_0 = 0.3 n_{cr}$

E.P.Alves et al., arXiv:1311.2034 (2014)

~10⁸ particles ~10⁴ time steps **3M core hours**

 $I_{seed} = I_{pump} = 10^{16} W/cm^2$ $n_0 = 0.3 n_{cr}$

E.P.Alves et al., arXiv:1311.2034 (2014)

Conclusions

PIC codes are a powerful tool to model kinetic physics (microphysics) of plasmas \bigcirc

- self-consistent interplay between plasma microphysics and global evolution
- IC codes are successfully being used to guide and interpret laser-plasma experiments
- \bigcirc across different applications

• Current HPC resources enable PIC simulations of large-scale domains, revealing

Combination of improved PIC algorithms + HPC is revolutionizing plasma science

